Answer:
the sequence is arithmetic with first term 2 and common different is 2
Step-by-step explanation:
please give me brainlest
The 24 ounce one ig because if you divide 7.50 by 15 you’ll find out that it’s 0.50€ per ounce. You’re saving money and getting more for the 25 pack because it should originally be $12.50 but they are giving you 10 more ounces for just $11.75
Answer:
x ≤ 19
Step-by-step explanation:
The instructions here are probably "solve for x." Please include them.
4 - x + 6^2 ≥ 21
becomes 4 - x + 36 ≥ 21
Now combine like terms. 4 and 36 combine to 40: 40 - x ≥ 21, and so:
19 - x ≥ 0
Adding x to both sies results in
x ≤ 19
Please, include the instructions when you post a question. Thanks.
Answer:
B and C. can you select more than one?
Steps:
1) determine the domain
2) determine the extreme limits of the function
3) determine critical points (where the derivative is zero)
4) determine the intercepts with the axis
5) do a table
6) put the data on a system of coordinates
7) graph: join the points with the best smooth curve
Solution:
1) domain
The logarithmic function is defined for positive real numbers, then you need to state x - 3 > 0
=> x > 3 <-------- domain
2) extreme limits of the function
Limit log (x - 3) when x → ∞ = ∞
Limit log (x - 3) when x → 3+ = - ∞ => the line x = 3 is a vertical asymptote
3) critical points
dy / dx = 0 => 1 / x - 3 which is never true, so there are not critical points (not relative maxima or minima)
4) determine the intercepts with the axis
x-intercept: y = 0 => log (x - 3) = 0 => x - 3 = 1 => x = 4
y-intercept: The function never intercepts the y-axis because x cannot not be 0.
5) do a table
x y = log (x - 3)
limit x → 3+ - ∞
3.000000001 log (3.000000001 -3) = -9
3.0001 log (3.0001 - 3) = - 4
3.1 log (3.1 - 3) = - 1
4 log (4 - 3) = 0
13 log (13 - 3) = 1
103 log (103 - 3) = 10
lim x → ∞ ∞
Now, with all that information you can graph the function: put the data on the coordinate system and join the points with a smooth curve.