Answer:
(a)
(b)
(c) x=12
(d)Optimal ticket price: $12
Maximum Revenue:$360,000
Step-by-step explanation:
The stadium holds up to 50,000 spectators.
When ticket prices were set at $12, the average attendance was 30,000.
When the ticket prices were on sale for $10, the average attendance was 35,000.
(a)The number of people that will buy tickets when they are priced at x dollars per ticket = D(x)
Since D(x) is a linear function of the form y=mx+b, we first find the slope using the points (12,30000) and (10,35000).

Therefore, we have:

At point (12,30000)

Therefore:

(b)Revenue

(c)To find the critical values for R(x), we take the derivative and solve by setting it equal to zero.

The critical value of R(x) is x=12.
(d)If the possible range of ticket prices (in dollars) is given by the interval [1,24]
Using the closed interval method, we evaluate R(x) at x=1, 12 and 24.

Therefore:
- Optimal ticket price:$12
- Maximum Revenue:$360,000
To start, note that an hour is 60 minutes long. A 1/2 hour, or half hour, is then 60/2=30 minutes. Therefore, when we have 11 hours and 30 minutes, we have 11 and a half hours. Adding 3 and a half to that, we get 11.5+3.5=15 (a half can also be expressed as .5, although it's not typically done that way when expressing time - it just might be easier to visualize it this way). Therefore, we are 15 hours into the day. However, we can't just stop there - we have to account for AM and PM. Therefore, we subtract 12 hours from 15. If the number is positive, we are in PM - otherwise, we're in AM. Therefore, as 15-12=3, the time is in PM. The remaining number is the time, so Bill leaves at 3 PM. If we are left with a decimal (e.g. 3.25), we would keep the 3 and multiply the 0.25 (the decimal) by 60 to figure out how many minutes we have, so 3.25 would turn into 3+0.25*60=3:15.
Feel free to ask further questions!
Answer:
3b-2
Step-by-step explanation:
Answer:
about 154.3
Step-by-step explanation: