Answer:
4
Explanation:
Since the third term is the sum of the two previous terms
Continuing in like manner
Since
Recall:
The sequence is therefore:
8,-5,3,-2,1,-1,0
The sum of the seven numbers is 4.
Answer:
The Width of the Rectangle =![10y^6](https://tex.z-dn.net/?f=10y%5E6)
![\text{Length of the Rectangle}=210y^8](https://tex.z-dn.net/?f=%5Ctext%7BLength%20of%20the%20Rectangle%7D%3D210y%5E8)
Step-by-step explanation:
The area of the rectangle ![=70y^8 30y^6.](https://tex.z-dn.net/?f=%3D70y%5E8%2030y%5E6.)
We are told that the width of the rectangle is equal to the greatest common monomial factor of ![70y^8 \: and\: 30y^6.](https://tex.z-dn.net/?f=70y%5E8%20%5C%3A%20and%5C%3A%2030y%5E6.)
Let us determine the greatest common monomial factor of ![70y^8 \: and\: 30y^6.](https://tex.z-dn.net/?f=70y%5E8%20%5C%3A%20and%5C%3A%2030y%5E6.)
Express each term as a product to pick out the common factors:
![70y^8 =7X10Xy^6Xy^2\\30y^6=3X10Xy^6](https://tex.z-dn.net/?f=70y%5E8%20%3D7X10Xy%5E6Xy%5E2%5C%5C30y%5E6%3D3X10Xy%5E6)
In the two terms, the common terms are 10 and
. Therefore their greatest monomial factor =![10y^6](https://tex.z-dn.net/?f=10y%5E6)
The Width of the Rectangle =![10y^6](https://tex.z-dn.net/?f=10y%5E6)
Recall: Area of a Rectangle =Length X Width
![70y^8 30y^6=Length X 10y^6\\Length =70y^8 30y^6 \div 10y^6 \\=\dfrac{70X30Xy^8Xy^6}{10y^6} =210y^8\\\text{Length of the Rectangle}=210y^8](https://tex.z-dn.net/?f=70y%5E8%2030y%5E6%3DLength%20X%2010y%5E6%5C%5CLength%20%3D70y%5E8%2030y%5E6%20%5Cdiv%2010y%5E6%20%5C%5C%3D%5Cdfrac%7B70X30Xy%5E8Xy%5E6%7D%7B10y%5E6%7D%20%3D210y%5E8%5C%5C%5Ctext%7BLength%20of%20the%20Rectangle%7D%3D210y%5E8)
46 i think. sorry if i’m wrong
![\begin{gathered}\\ \sf\longmapsto 11=\frac{8+u}{7.68}\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%2011%3D%5Cfrac%7B8%2Bu%7D%7B7.68%7D%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto 11 = \frac{8 + u}{ \frac{192}{25} } \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%2011%20%3D%20%20%5Cfrac%7B8%20%2B%20u%7D%7B%20%5Cfrac%7B192%7D%7B25%7D%20%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto 11=\frac{(8+u)×25}{192}\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%2011%3D%5Cfrac%7B%288%2Bu%29%C3%9725%7D%7B192%7D%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto 11=\frac{200+25u}{192}\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%2011%3D%5Cfrac%7B200%2B25u%7D%7B192%7D%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto 2112=200+25u\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%202112%3D200%2B25u%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto 2112-25u=200\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%202112-25u%3D200%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto -25u=200-2112\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%20-25u%3D200-2112%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto -25u=-1912\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%20-25u%3D-1912%5Cend%7Bgathered%7D)
![\begin{gathered}\\ \sf\longmapsto u=\frac{1912}{25}\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5C%5C%20%5Csf%5Clongmapsto%20u%3D%5Cfrac%7B1912%7D%7B25%7D%5Cend%7Bgathered%7D)
<u>Alternate form:</u>
<u>u</u><u>=</u><u>76.48</u>