Answer:
Below
Step-by-step explanation:
The length of this triangle is 3x+1 and the width is x.
The perimeter P is:
P= 2(3x+1)+2*x
P= 6x+2+2x
P= 8x+2
Let's evaluate it when x=1/2
●1/2 =0.5
P= 8*0.5+2 =4+2= 6 ft
●●●●●●●●●●●●●●●●●●●●●●●●
The area A is:
A = (3x+1)*x
A= 3x^2 +x
Let's evaluate it when x=0.5 feet
A= 3*0.5^2 +0.5
A= 3*0.25+0.5
A= 0.75 +0.5
A= 1.25 ft^2
Answer:
18.85 feet
Step-by-step explanation:
Determine the arc length of SR
Arc length = θ/360 × 2πr
r = 9 feet
θ =120°
Arc length = 120/360 × 2 × π × 9
= 18.849555922 feet
Approximately = 18.85 feet
Therefore, the arc length of SR = 18.85 feet
Answer:
10 outcomes
Step-by-step explanation:
The number of outcomes is the number of marbles in the bag since we are taking out one marble
4+2+1+3 = 10
There are 10 outcomes
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let \displaystyle PP be the student population and \displaystyle nn be the number of years after 2013. Using the explicit formula for a geometric sequence we get
{P}_{n} =284\cdot {1.04}^{n}P
n
=284⋅1.04
n
We can find the number of years since 2013 by subtracting.
\displaystyle 2020 - 2013=72020−2013=7
We are looking for the population after 7 years. We can substitute 7 for \displaystyle nn to estimate the population in 2020.
\displaystyle {P}_{7}=284\cdot {1.04}^{7}\approx 374P
7
=284⋅1.04
7
≈374
The student population will be about 374 in 2020.