Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>
The concentration refers to the amount of substance that is contained in solution.
<h3>What is the concentration?</h3>
The concentration refers to the amount of substance that is contained in solution. We can be able to obtain the concentration of the raw acid by the use of the relation;
Co = 10pd/M
M = molar mass of the acid
p = percentage of the acid
d = density of the acid
Co = 10 * 36 * 1.18/36.5
Co = 11.6 M
Using the dilution formula;
C1V1 = C2V2
10 * 11.6 = C2 * 1000
C2 = 10 * 11.6/1000
C2 = 0.116 M
Using again;
C1V1 = C2V2
0.116 * 5 = C2 * 20
C2 = 0.116 * 5 /20
C2 = 0.029 M
Learn more about concentration:brainly.com/question/10725862
#SPJ1
According to the kinetic molecular theory for an ideal gas, all gas particles "<span>have collisions that decrease the total energy of the system" but this is not always the case. </span>
Answer:
See explanation below
Explanation:
In this case, HCl is a strong acid, therefore, it dissociates completely in solution.
To know the quantity of water we need to add, we first need to know the concentration of the acid with pH = 6:
[H⁺] = antlog(-pH)
[H⁺] = antlog(-6) = 1x10⁻⁶ M
This means that the concentration is being diluted.
Now, even if we add great quantities of water, and the concentration and volume change, there is one time that do not change despite the quantity of water added; this is the moles. So, all we have to do, is calculate the moles of the acid in the 1 mL of water, and then, the volume of the acid when it's dilluted:
moles HCl = 0.1 * (1/1000) = 1x10⁻⁴ moles
Now that we have the moles, we can calculate the volume which the acid with the lowest concentration has:
V = mol/M
V = 1x10⁻⁴ / 1x10⁻⁶
V = 100 L
This means that we need to add 99.999 mL of water