The answer to that is Quark
Answer:
The correct answer is <em>d. At equilibrium, the forward reaction and reverse reaction will have the same reaction rate.</em>
Explanation:
When a reaction begins, the reactants combine to form products. At the same time of product formation, the convertion of products into reactants also occur. The reaction reaches <em>chemical equilibrium </em>when the rate of forward reaction (the convertion of reactant into products) is equal to the rate of reverse reaction (the convertion of product into reactants). Upon this state, the concentration of reactants and products do not change in time (that does not mean that the concentration of reactants and products are equal, but that once the chemical equilibrium is reached, their concentrations at this point will not vary with the time because the forward and reverse reactions are occuring at the same velocity).
Explanation:
It is necessary that the glassware which we use during titration needs to be clean and dry before use because otherwise the remaining reagents will get mixed up with the solutions.
As a result, this will lead to a change in analysis results.
Hence, an error will occur in the resulting values.
Also, when not cleaned properly the any other substance remaining in the glassware might react with the solution leading to a change in the solution.
In that case also, error will occur.
Answer:
V₂ = 107.84 L
Explanation:
Given data:
Initial volume = 100 L
Initial pressure = 80 KPa (80/101 =0.79 atm)
Initial temperature = 200 K
Final temperature =273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁T₂ /T₁P₂
V₂ = 0.79 atm × 100 L × 273 K / 200 K × 1 atm
V₂ =21567 atm.L.K /200 K.atm
V₂ = 107.84 L
Carbon is the answer it is the main molecule in the atom