Answer:
See explanation
Step-by-step explanation:
Simplify left and right parts separately.
<u>Left part:</u>
![\left(1+\dfrac{1}{\tan^2A}\right)\left(1+\dfrac{1}{\cot ^2A}\right)\\ \\=\left(1+\dfrac{1}{\frac{\sin^2A}{\cos^2A}}\right)\left(1+\dfrac{1}{\frac{\cos^2A}{\sin^2A}}\right)\\ \\=\left(1+\dfrac{\cos^2A}{\sin^2A}\right)\left(1+\dfrac{\sin^2A}{\cos^2A}\right)\\ \\=\dfrac{\sin^2A+\cos^2A}{\sin^2A}\cdot \dfrac{\cos^2A+\sin^A}{\cos^2A}\\ \\=\dfrac{1}{\sin^2A}\cdot \dfrac{1}{\cos^2A}\\ \\=\dfrac{1}{\sin^2A\cos^2A}](https://tex.z-dn.net/?f=%5Cleft%281%2B%5Cdfrac%7B1%7D%7B%5Ctan%5E2A%7D%5Cright%29%5Cleft%281%2B%5Cdfrac%7B1%7D%7B%5Ccot%20%5E2A%7D%5Cright%29%5C%5C%20%5C%5C%3D%5Cleft%281%2B%5Cdfrac%7B1%7D%7B%5Cfrac%7B%5Csin%5E2A%7D%7B%5Ccos%5E2A%7D%7D%5Cright%29%5Cleft%281%2B%5Cdfrac%7B1%7D%7B%5Cfrac%7B%5Ccos%5E2A%7D%7B%5Csin%5E2A%7D%7D%5Cright%29%5C%5C%20%5C%5C%3D%5Cleft%281%2B%5Cdfrac%7B%5Ccos%5E2A%7D%7B%5Csin%5E2A%7D%5Cright%29%5Cleft%281%2B%5Cdfrac%7B%5Csin%5E2A%7D%7B%5Ccos%5E2A%7D%5Cright%29%5C%5C%20%5C%5C%3D%5Cdfrac%7B%5Csin%5E2A%2B%5Ccos%5E2A%7D%7B%5Csin%5E2A%7D%5Ccdot%20%5Cdfrac%7B%5Ccos%5E2A%2B%5Csin%5EA%7D%7B%5Ccos%5E2A%7D%5C%5C%20%5C%5C%3D%5Cdfrac%7B1%7D%7B%5Csin%5E2A%7D%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Ccos%5E2A%7D%5C%5C%20%5C%5C%3D%5Cdfrac%7B1%7D%7B%5Csin%5E2A%5Ccos%5E2A%7D)
<u>Right part:</u>
![\dfrac{1}{\sin^2A-\sin^4A}\\ \\=\dfrac{1}{\sin^2A(1-\sin^2A)}\\ \\=\dfrac{1}{\sin^2A\cos^2A}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%5Csin%5E2A-%5Csin%5E4A%7D%5C%5C%20%5C%5C%3D%5Cdfrac%7B1%7D%7B%5Csin%5E2A%281-%5Csin%5E2A%29%7D%5C%5C%20%5C%5C%3D%5Cdfrac%7B1%7D%7B%5Csin%5E2A%5Ccos%5E2A%7D)
Since simplified left and right parts are the same, then the equality is true.
Answer:
Step-by-step explanation:
(3,4) ; (6,-1)
slope = y₂ - y₁ / x₂-x₁
= -1 - 4 / 6-3
= -5/3
The answer is Option B. It would be cheaper for Miguel to drive 200 miles with Option B than Option A.
Answer:
use Socratic
Step-by-step explanation:
it's a app
Length x width = area
<span>but
1feet=12</span><span>inches
</span>8 x 12=96
10<span>x96=960</span>