It might.
If the speed of light depends on the viscosity of the medium, then yes i think so.
Answer:
pH = 5.76
Explanation:
We can solve this problem by using<em> Henderson-Hasselbach's equation</em>:
pH = pKa + log![\frac{[SodiumAcetate]}{[AceticAcid]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSodiumAcetate%5D%7D%7B%5BAceticAcid%5D%7D)
We are already know all the required information, thus we<u> input the data given by the problem</u>:
pH = 4.76 + log(20/2)
And finally <u>calculate the pH</u>:
pH = 5.76
The pH of that acetic acid solution is 5.76.
Answer:
In the presence of UV light, ethane will react with bromine in a substitution reaction. UV light is the condition under which the reaction will occur so it is written above the arrow in the chemical equation. As the reaction proceeds, the intensity of the re-brown colour of the bromine water decreases.
Answer:
Explanation:
NaNO₃ = Na⁺ + NO₃⁻¹
.497 M .497 M
moles of NO₃⁻¹ = .897 x .497 = .4458 moles
Ca( NO₃)₂ = Ca + 2 NO₃⁻¹
.341 M 2 x .341 M = .682 M
moles of NO₃⁻¹ = .813 x .682 = .5544 moles
Total moles = .4458 moles + .5544 moles
= 1.0002 moles
volume of solution = 897 + 813 = 1710 mL
= 1.710 L
concentration of nitrate ion = 1.0002 / 1.710 M
= .585 M
Answer:
The advantages of fossil fuels are that they are abundant and accessible, they provide a large amount of concentrated energy, they are relatively low cost and they can be transported relatively easily.
Explanation:
I got it from Google and Google is always right lol
.