Well to solve this problem, we must remember that Oxygen
in ionic form is Oxide O2- (an electric charge of negative 2). Hence the
correct formulas and names taking into account the charge of Oxygen are:
c) Co2O3, cobalt(III) oxide
f) CoO, cobalt(II) oxide
Answer:
The phosphorus ylide reacts with the aldehyde or ketone to make an oxaphosphetane.
Explanation:
The Wittig reaction is a reaction that occurs between a phosphorus ylide and an aldehyde or ketone. The final products are an alkene and triphenyl phosphine oxide.
The first step in the reaction is the attack of the phosphorus ylide on the aldehyde or ketone. This is followed by attack of oxygen on phosphorus to form a [2+2] cycloaddition product (oxaphosphetane) which decomposes to form the alkene and triphenylphosphine oxide.
The ice will require two forms of heat: latent to melt and sensible to be heated to 50 °C.
Q(ice) = ml + mCpΔT
= 150 x 333 + 150 x 4.18 x 50
= 85950 Joules
The mass of steam must release this much energy in two forms: latent to fuse into water and then sensible to cool to 50 °C.
85950 = m(2256) + 4.18 x 50 x m
m = 34.9 grams of steam.
The question number 1 is cytoplasm
Question number 2 is to supply more oxygen to the muscles
Answer:
8 OH⁻(aq) + Mn(s) ⇒ MnO₄⁻(aq) + 4 H₂O(l) + 7 e⁻
Explanation:
Let's consider the following oxidation half-reaction that takes place in basic aqueous solution.
Mn(s) ⇒ MnO₄⁻(aq)
First, we will perform the mass balance. We will add 4 H₂O to the products side and 8 OH⁻ to the reactants side.
8 OH⁻(aq) + Mn(s) ⇒ MnO₄⁻(aq) + 4 H₂O(l)
Finally, we will perform the charge balance by adding 7 electrons to the products side.
8 OH⁻(aq) + Mn(s) ⇒ MnO₄⁻(aq) + 4 H₂O(l) + 7 e⁻