Answer:
½O 2 + 2e - + H 2O → 2OH.
Explanation:
Redox reactions - Higher
In terms of electrons:
oxidation is loss of electrons
reduction is gain of electrons
Rusting is a complex process. The example below show why both water and oxygen are needed for rusting to occur. They are interesting examples of oxidation, reduction and the use of half equations:
iron loses electrons and is oxidised to iron(II) ions: Fe → Fe2+ + 2e-
oxygen gains electrons in the presence of water and is reduced: ½O2 + 2e- + H2O → 2OH-
iron(II) ions lose electrons and are oxidised to iron(III) ions by oxygen: 2Fe2+ + ½O2 → 2Fe3+ + O2-
The small intestine i think :) hope that helps
Answer:
The ΔHrxn for the above equation = 179 kJ/mol
Explanation:
The reaction bond enthalpies are for the reactant;
3 × N-H = 3 × 390 = 1,170 kJ/mol
2 × O=O = 2 × 502 = 1004 kJ/mol
The reaction bond enthalpies are for the product;
3 × N-O = 3 × 201 = 603 kJ/mol
3 × O-H = 3 × 464 = 1,392 kJ/mol
The ΔHrxn for the above equation is therefore;
ΔHrxn = 1,170 + 1,004 - (603 + 1,392) = 179 kJ/mol
Answer:
The reaction must be spontaneous, the disorder of the system increases.
Explanation:
By the Second Law of Thermodynamics, a positive change in entropy is due to a net input heat, and entropy is a measure of the grade of disorder within the system. The net input heat means that resultant goes to the system from the surroundings.
By the First Law of Thermodynamics, a net input heat is due to a positive change in enthalpy.
The reaction is endothermic and spontaneous (since change in entropy is positive).