D, sense there are no repeating numbers in the input (Y)
Answer:
value of x = 5.8 mm
Step-by-step explanation:
We have given,
Two right triangles EDH and EDG.
In right triangle EDH, EH = 56mm , DH = 35 mm
Using Pythagoras theorem we can find ED.
i.e EH² = ED²+DH²
56²=ED²+35²
ED²=56²-35²
ED = √(56²-35²) = 7√39 = 43.71 mm
Now, Consider right triangle EDG
Here, EG=44.8mm , GD = x+4 and ED = 7√39
Again using Pythagoras theorem,
EG² = ED² + DG²
44.8²= (7√39)²+ (x+4)²
(x+4)² = 44.8² - (7√39)²
x+4 = √(44.8² - (7√39)²)
x+4 = 9.8
or x = 9.8 - 4 = 5.8 mm
Hence we got the value of x = 5.8 mm
The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>
Answer:
d = 12800/f
Step-by-step explanation:
variation of proportion is 256(50) = 12,800
d = 12800/f