Answer:
C.
Explanation:
para sakin letter C ganonn
Answer:
44.63g
Explanation:
First, let us calculate the number of mole of KBr in 1.50M KBr solution.
This is illustrated below:
Data obtained from the question include:
Volume of solution = 250mL = 250/1000 = 0.25L
Molarity of solution = 1.50M
Mole of solute (KBr) =.?
Molarity is simply mole of solute per unit litre of solution
Molarity = mole /Volume
Mole = Molarity x Volume
Mole of solute (KBr) = 1.50 x 0.25
Mole of solute (KBr) = 0.375 mole
Now, we calculate the mass of KBr needed to make the solution as follow:
Molar Mass of KBr = 39 + 80 = 119g/mol
Mole of KBr = 0.375 mole
Mass of KBr =?
Mass = number of mole x molar Mass
Mass of KBr = 0.375 x 119
Mass of KBr = 44.63g
Therefore, 44.63g of KBr is needed to make 250.0mL of 1.50 M potassium bromide (KBr) solution
The answer is all of them. But in a school situation, A would be appropriate. This is because the smoke gets into the smokers lungs, whether it be marijuana or tobacco, and can cause cancer cells to grow in your lungs and enter your bloodstream.
So A is the answer.
Answer:
B) The volume is the same for any gas.
Explanation:
Considering the ideal gas equation as:-
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 8.314 J/ K mol
At STP,
Pressure = 1 atm
Temperature = 273.15 K
So, applying the values we get that 1 mole of any gas occupies a volume of 22.4 L
Thus, correct option is:- B) The volume is the same for any gas.