1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
3 years ago
14

NEED HELP ASAP PLEASEEEEEEE

Mathematics
1 answer:
Ann [662]3 years ago
8 0
Maybe if u studied...
You might be interested in
For the following geometric sequence find the explicit formula {1,-3,9,...}
Zarrin [17]
The first term of this series (a+1) is 1 and the common ratio (r) is -3.

Thus, the explicit formula is a_n = 1*(-3)^(n-1).

Must check this!  suppose we try to calculate the 3rd term.  Then n = 3.

a_3 = 1*(-3)^(3-1) = (-3)^2 = 9.  This is correct.
3 0
4 years ago
Read 2 more answers
The number divided by -4 is increased by -63, the result is -45. What is the number? 
Pavlova-9 [17]
X / (-4) + ( -63) = -45 <=> x / ( -4) = 63 - 45 <=> x / (-4) = 18 <=> x = 18 * (-4) <=> x = -72.
3 0
3 years ago
Read 2 more answers
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
A postcard has an area of 10 square inches. Two enlargements of the postcard have areas of 40 square inches and 160 square inche
insens350 [35]

Answer:

62

Step-by-step explanation:

3 0
4 years ago
-1 + 2x - x = x - 8 + (-x)
CaHeK987 [17]

Answer:

x = -7

Step-by-step explanation:

-1 + x = -8

x = -7

6 0
3 years ago
Other questions:
  • QUICK ANSWER !!! NEED CORRECT ANSWERS !! WILL MARK BRAINLIEST ASAP!!
    15·1 answer
  • (2x + 6y = -28<br> (x+3y=-14<br> YOU<br> how do u solve this
    6·2 answers
  • Please need help quick!!!
    6·2 answers
  • The basketball team won 12 of their 15 games this year. What percent
    5·1 answer
  • Please solve this for me
    5·1 answer
  • The a oranial price of a skate broad was reduced by 15 dollars .the new price is 49 dollars if p=the stakebroads oranail price i
    14·2 answers
  • If a car goes 70 miles per hour how long does it take to go 70 miles
    7·2 answers
  • PLS HELP GRADES ARE DUE PLSS
    7·1 answer
  • 4(x + 2) - 1/2x = 22 solve the equation
    15·1 answer
  • 65= t - 5 - 7 what is t
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!