The formula is (number of sides-2)*180 over number of sides
Each angle for hexagon is 120degree because
(6-2)*180 over 6 equals to 120
So p is 120
For q:
2q=180-120
2q=60
q=60 over 2
q=30
P+Q=120+30
=150
Answer:
- (3, 5), (1, 2) and (5, 1)
Step-by-step explanation:
Make three systems with pairs of lines and solve them to work out the vertices.
1) <u>Line 1 and line 2</u>
<u>Double the second equation and subtract equations:</u>
- -3x + 2y - 2(2x + y) = 1 - 2(11)
- -3x - 4x = 1 - 22
- -7x = - 21
- x = 3
<u>Find y:</u>
- 2*3 + y = 11
- 6 + y = 11
- y = 11 - 6
- y = 5
The point is (3, 5)
2) <u>Line 1 and line 3</u>
<u>Triple the second equation and add up equations:</u>
- -3x + 2y + 3(x + 4y) = 1 + 3(9)
- 2y + 12y = 1 + 27
- 14y = 28
- y = 2
<u>Find x:</u>
- x + 4*2 = 9
- x + 8 = 9
- x = 1
The point is (1, 2)
3) <u>Line 2 and line 3</u>
<u>Double the second equation and subtract the equations:</u>
- 2x + y - 2(x + 4y) = 11 - 2(9)
- y - 8y = 11 - 18
- - 7y = - 7
- y = 1
<u>Find x:</u>
- x + 4*1 = 9
- x + 4 = 9
- x = 5
The point is (5, 1)
Answer:
a = 
b = 12
c = 
Step-by-step explanation:
Since the triangles are right triangles with 60 and 45 degree angles, their side lengths follow special triangles.
A 45-45-90 right triangle has side lengths
.
A 30-60-90 right triangle has side lengths
.
Starting with the top triangle which has a 60 degree angle, its side length 6 corresponds to a side length of 1 in the special triangle. It is 6 times bigger so its remaining sides will be 6 times bigger too.
Side a corresponds to side length
. Therefore,
.
Side b corresponds to side length 2, b = 2*6 = 12.
The bottom triangle has a 45 degree angle, its side length b= 12 corresponds to
. This means
was multiplied by
. This means that side c is
.
Hey there!
if i am doing this correct it should be
17/50, let me explain!
.34 is 34/100 and both of these numbers are even, thus you can divide it by 2 which will give you 17/50
Hope This Helps!!!
Let's call the width of our rectangle
and the length
. We can say
, since the length is equal to 4 cm greater than the width.
Also remember that the perimeter of a rectangle is the sum of two times the width and two times the length, or
. To solve this problem, we can substitute in the information we know, as shown below:




Now, we can substitute in the width we found into the formula for length, which is
:


The width of our rectangle is
cm and the length of our rectangle is 