Answer:
Z(-0.2, 2.2).
Step-by-step explanation:
We will use section formula when a point, say P, divides any segment ,say AB, internally in the ratio m:n.
![[x=\frac{mx_2+nx_1}{m+n}, y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2C%20y%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
We have been given the points of segment XY as X at (-2,1) and Y at (4,5) and ratio is 3:7.

Upon substituting coordinates of our given points in section formula we will get,
![[x=\frac{(3*4)+(7*-2)}{3+7}, y= \frac{3*5+7*1}{3+7}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B%283%2A4%29%2B%287%2A-2%29%7D%7B3%2B7%7D%2C%20y%3D%20%5Cfrac%7B3%2A5%2B7%2A1%7D%7B3%2B7%7D%5D)
![[x=\frac{12-14}{10}, y= \frac{15+7}{10}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B12-14%7D%7B10%7D%2C%20y%3D%20%5Cfrac%7B15%2B7%7D%7B10%7D%5D)
![[x=\frac{-2}{10}, y= \frac{22}{10}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B-2%7D%7B10%7D%2C%20y%3D%20%5Cfrac%7B22%7D%7B10%7D%5D)
![[x=-0.2, y= 2.2]](https://tex.z-dn.net/?f=%5Bx%3D-0.2%2C%20y%3D%202.2%5D)
Therefore, coordinates of point Z will be (-0.2, 2.2).
Answer:
Mean weight = 19 pounds
Step-by-step explanation:
From the question given above, the following data were obtained:
17, 11, 21, 24, 22
Number of data (n) = 5
Mean weight =?
The mean of a set of data is the value obtained by adding all the data together and dividing the result obtained by the total number of data. Thus, the mean can be obtained as follow:
Summation of data = 17+ 11 + 21 + 24 + 22
= 95
Number of data = 5
Mean = Summation of data / Number of data
Mean = 95 / 5
Mean weight = 19 pounds
Therefore, the mean weight of the data is 19 pounds
The answer is B). graph B
Answer:
Area of the garden:

Explanation:
Given the below parameters;
Length of the rectangle(l) = 23 ft
Width of the rectangle(w) = 14 ft
Value of pi = 3.14
Since the width of the rectangle is 14 ft, so the diameter(d) of the semicircle is also 14 ft.
The radius(r) of the semicircle will now be;

Let's now go ahead and determine the area of the semicircle using the below formula;

Let's also determine the area of the rectangle;

We can now determine the area of the garden by adding the area of the semicircle and that of the rectangle together;

Therefore, the area of the garden is 398.93 ft^2