What is the median of the data set? <br>
{10, 15, 14, 14, 10, 10, 8, 18, 11, 12, 17, 16}
Alexus [3.1K]
The median of a data set is the 'middle number'. You can find the median by listing the given numbers from least to greatest (left to right) and finding the middle number.
8, 10, 10, 10, 11, 12, 14, 14, 15, 16, 17, 18
Cross one out on each side before getting to your last number that should be in the middle.
The middle numbers are: 12 and 14. If it was only one number, we could already have the answer, but since it is two numbers in the middle, we need to add them up and divide by 2.
12 + 14 = 26
26 ÷ 2 = 13
So, the median of the data set is: 13.
Answer:
Prepara a bar graph. (Mention the scale)
Potato= 25 per kg
Tomato= 40 per kg
Cauliflower= 10 per kg
Chilli= 15 per kg
Lemon= 30 per kg
The answer is D. ..........
Answer:
9x + 36, donde x es el primer número
Step-by-step explanation:
Sea "x" un número cualquiera, el consecutivo o sucesor, corresponde al número que va después, se representa como: (x + 1)
Primer número: x
Segundo número: x + 1
Tercer número: x + 2
Cuarto número: x + 3
Quinto número: x + 4
6th número: x + 5
Séptimo número: x + 6
Octavo número: x + 7
Noveno número: x + 8
La suma de 9 números consecutivos, es:
x + (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) + (x + 6) + (x + 7) + (x + 8)
9x + 36
Espero que esto ayude!!!
One possible equation for this quadratic would be
y=(x-4)²-1. This is vertex form: y=a(x-h)²+k, where (h, k) is the vertex.
However, this is not the only possible equation. There could be multiple values for a, in front of the parentheses, that we don't know about from the information we are given.
We can also write this equation in standard form (y=ax²+bx+c). First write the squared binomial as the product of two binomials:
y=(x-4)(x-4)-1
Multiply the binomials:
y=x*x-4*x-4*x-4(-4)-1
= x²-4x-4x--16-1
= x²-8x+16-1
= x²-8x+15
Again, this would change depending on what the value of a is in the functoin.