This will lower the demand of purple clogs which will in turn bring down the price.
Answer:
-3 x (-2)^19
Step-by-step explanation:
The equation that fits the standard form of a Quadratic equation is 2(x + 5)² + 8x + 5 + 6 = 0 which can be re-written as 2x² + 28x + 61 = 0.
<h3>What is a Quadratic Equation?</h3>
Quadratic equation is simply an algebraic expression of the second degree in x. Quadratic equation in its standard form is;
ax² + bx + c = 0
Where x is the unknown
From the given data, we check which of them fits the standard form of a quadratic equation.
- 2(x + 5)² + 8x + 5+ 6 = 0
2(x + 5)² + 8x + 5 + 6 = 0
2( (x(x+5) + 5(x+5) ) + 8x + 5 + 6 = 0
2( x² + 5x + 5x + 25 ) + 8x + 5 + 6 = 0
2( x² + 10x + 25 ) + 8x + 5 + 6 = 0
2x² + 20x + 50 + 8x + 5 + 6 = 0
2x² + 20x + 8x + 50 + 5 + 6 = 0
2x² + 28x + 61 = 0
Therefore, the equation that fits the standard form of a Quadratic equation is 2(x + 5)² + 8x + 5 + 6 = 0 which can be re-written as 2x² + 28x + 61 = 0.
Learn more about quadratic equations here: brainly.com/question/1863222
#SPJ4
Pretty sure it's D :)))))
Answer:
Step-by-step Explanation:
![\huge \frac{2 + \sqrt[3]{3} }{ \sqrt[3]{6} } \\ \\ = \huge \frac{(2 + \sqrt[3]{3} )}{ \sqrt[3]{6} } \times \frac{ \sqrt[3]{6} \times \sqrt[3]{6} }{\sqrt[3]{6} \times \sqrt[3]{6}} \\ \\ = \huge \frac{(2 + \sqrt[3]{3} )}{ \sqrt[3]{6} } \times \frac{ \sqrt[3]{6 ^{2} } }{\sqrt[3]{6^{2}} } \\ \\ = \huge \frac{(2 + \sqrt[3]{3} )\sqrt[3]{6} }{ \sqrt[3]{6} \times \sqrt[3]{6 ^{2} }} \\ \\ = \huge \frac{(2 \sqrt[3]{6} + \sqrt[3]{3} \sqrt[3]{6} )}{ \sqrt[3]{6 ^{3} }} \\ \\ = \huge \orange{\frac{2 \sqrt[3]{6} + \sqrt[3]{18} }{ 6} }](https://tex.z-dn.net/?f=%20%5Chuge%20%5Cfrac%7B2%20%2B%20%20%5Csqrt%5B3%5D%7B3%7D%20%7D%7B%20%5Csqrt%5B3%5D%7B6%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Cfrac%7B%282%20%2B%20%20%5Csqrt%5B3%5D%7B3%7D%20%29%7D%7B%20%5Csqrt%5B3%5D%7B6%7D%20%7D%20%20%5Ctimes%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B6%7D%20%7D%7B%5Csqrt%5B3%5D%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B6%7D%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%5Chuge%20%5Cfrac%7B%282%20%2B%20%20%5Csqrt%5B3%5D%7B3%7D%20%29%7D%7B%20%5Csqrt%5B3%5D%7B6%7D%20%7D%20%20%5Ctimes%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7B6%20%5E%7B2%7D%20%7D%20%20%7D%7B%5Csqrt%5B3%5D%7B6%5E%7B2%7D%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%3D%20%20%5Chuge%20%5Cfrac%7B%282%20%2B%20%20%5Csqrt%5B3%5D%7B3%7D%20%29%5Csqrt%5B3%5D%7B6%7D%20%7D%7B%20%5Csqrt%5B3%5D%7B6%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B6%20%5E%7B2%7D%20%7D%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%5Chuge%20%5Cfrac%7B%282%20%5Csqrt%5B3%5D%7B6%7D%20%2B%20%20%5Csqrt%5B3%5D%7B3%7D%20%5Csqrt%5B3%5D%7B6%7D%20%29%7D%7B%20%20%5Csqrt%5B3%5D%7B6%20%5E%7B3%7D%20%7D%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%5Chuge%20%20%5Corange%7B%5Cfrac%7B2%20%5Csqrt%5B3%5D%7B6%7D%20%2B%20%20%5Csqrt%5B3%5D%7B18%7D%20%7D%7B%20%206%7D%20%20%7D)