Answer:
(arranged from top to bottom)
System #3, where x=6
System #1, where x=4
System #7, where x=3
System #5, where x=2
System #2, where x=1
Step-by-step explanation:
System #1: x=4

To solve, start by isolating your first equation for y.

Now, plug this value of y into your second equation.

System #2: x=1

Isolate your second equation for y.

Plug this value of y into your first equation.

System #3: x=6

Isolate your first equation for y.

Plug this value of y into your second equation.

System #4: all real numbers (not included in your diagram)

Plug your value of y into your second equation.

<em>all real numbers are solutions</em>
System #5: x=2

Isolate your second equation for y.

Plug in your value of y to your first equation.

System #6: no solution (not included in your diagram)

Isolate your first equation for y.

Plug your value of y into your second equation.

<em>no solution</em>
System #7: x=3

Plug your value of y into your second equation.

Answer:
x= 4/5 or 0.8
Step-by-step explanation:
Answer: 
<u>Step-by-step explanation:</u>
![\text{Use the distance formula: }d_AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}\\where\ (X_A, y_A)=(-3, -2)\\and\ (x_B,y_B)=(4, -7)\\\\\\d_AB=\sqrt{(-3-4)^2+[-2-(-7)]^2}\\\\.\quad =\sqrt{(-7)^2+(5)^2}\\\\.\quad =\sqrt{49+25}\\\\.\quad =\boxed{\sqrt{74}}](https://tex.z-dn.net/?f=%5Ctext%7BUse%20the%20distance%20formula%3A%20%7Dd_AB%3D%5Csqrt%7B%28x_A-x_B%29%5E2%2B%28y_A-y_B%29%5E2%7D%5C%5Cwhere%5C%20%28X_A%2C%20y_A%29%3D%28-3%2C%20-2%29%5C%5Cand%5C%20%28x_B%2Cy_B%29%3D%284%2C%20-7%29%5C%5C%5C%5C%5C%5Cd_AB%3D%5Csqrt%7B%28-3-4%29%5E2%2B%5B-2-%28-7%29%5D%5E2%7D%5C%5C%5C%5C.%5Cquad%20%3D%5Csqrt%7B%28-7%29%5E2%2B%285%29%5E2%7D%5C%5C%5C%5C.%5Cquad%20%3D%5Csqrt%7B49%2B25%7D%5C%5C%5C%5C.%5Cquad%20%3D%5Cboxed%7B%5Csqrt%7B74%7D%7D)
Answer:
fifth option
Step-by-step explanation:
Given
- 2(x - 5) ≤ 6x + 18 ← distribute left side
- 2x + 10 ≤ 6x + 18 ( subtract 6x from both sides )
- 8x + 10 ≤ 18 ( subtract 10 from both sides )
- 8x ≤ 8
Divide both sides by - 8, reversing the sign as a result of dividing by a negative quantity, thus
x ≥ - 1
Is useful<span> in </span>proving<span>various theorems about </span>triangles<span> and other polygons.
</span>