Answer:
Step-by-step explanation:
Complete Question:
Chapter 6, Section 1-D, Exercise 009 Is a Normal Distribution Appropriate? In each case below, is the sample size large enough so that the sample proportions follow a normal distribution?
a) n=600 p=0.2
b) n=20, p=0.4
if np=10 and npq=10 then the data follows normal distribution
a) np= 120,
q= 1-0.2= 0.8
npq= 600 ×0.2×0.4 = 48
Normal distribution is appropriate and sample size is large enough
b) np= 8
q= 1-0.4= 0.6
npq= 20 × 0.4×0.6= 4.8
sample size is not large enough so normal distribution is not appropriate.
Step-by-step explanation:
Given the information:
- 1st square: 12 square units
- 2nd square: DOUBLE that of the first square = 2*12 = 24 square units
From that, we can determine the length of the side in each square:
1/ 
<=> x = 2
2/ 
<=> a = 2
Please have a look at the attached photo.
Hope it will find you well.
Answer:
0,4,16
Step-by-step explanation:
i hope that helps
The answer is that they are similar triangles
Answer:
Step-by-step explanation:
You are to make 5 assemblies.
Each assembly requires the use of 1 Type A bolt.
To make the 5 assemblies, you need 5 Type A bolts.
The container of bolts has a total of 60 bolts.
The focus - Type A bolts - is 20 out of this 60.
The probability of obtaining a Type A bolt at all, is 20/60, which is = 1/3
(A) What is the probability of taking the exact number of Type A bolts you need for your 5 assemblies, if you randomly take 10 bolts from the container?
- The exact number of Type A bolts you need for the 5 assemblies is 5
1/3 × 5/10 = 5/30 = 1/6 = 0.167
(B) What is the probability of taking/having less than 5 Type A bolts out of the randomly selected 10 bolts? The solution is to sum up the following:
1/3 × 4/10 = 0.133
1/3 × 3/10 = 0.1
1/3 × 2/10 = 0.067
1/3 × 1/10 = 0.033
1/3 × 0/10 = 0
TOTAL = 0.333