Answer:
f(-)=29/11
Step-by-step explanation:
Even though you don't want an explanation, I'll just tell you the basics lol.
So what you have to do, is plug in -7 for the x's.
it should look something like the equation below.

After that all you need to is just to subtract :)

Then after that all you need to do is just let the negatives cancel out each other so you should get:

Hope this helps!
<h3><em><u>given</u></em></h3>
<em><u>5m</u></em><em><u> </u></em><em><u>long</u></em><em><u> </u></em><em><u>ladder</u></em><em><u> </u></em><em><u>placed</u></em><em><u> </u></em><em><u>against</u></em><em><u> </u></em><em><u>4.3m</u></em><em><u> </u></em><em><u>up</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>wall</u></em><em><u>.</u></em>
<h3><em><u>to</u></em><em><u> </u></em><em><u>find</u></em><em><u>:</u></em></h3>
<em><u>the</u></em><em><u> </u></em><em><u>angle</u></em><em><u> </u></em><em><u>between</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>ladder</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>ground</u></em><em><u>.</u></em>
<h3><em><u>solution</u></em><em><u>:</u></em></h3>
<em><u>Based on the given conditions, formulate: </u></em>
<em><u>sinx=4.3÷5</u></em>
<em><u>Evaluate the equation/expression</u></em><em><u>:</u></em>
<em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>1.0352</u></em><em><u>7</u></em><em><u> </u></em><em><u>or</u></em><em><u> </u></em><em><u>2.10</u></em><em><u>6</u></em><em><u>3</u></em><em><u>2</u></em>
<em><u>x= 1.03527</u></em><em><u>°</u></em>
<em><u>or</u></em><em><u> </u></em><em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>2.10632</u></em><em><u>°</u></em>
Some decimals between 0.55 and 0.56 are 0.551, 0.552, 0.553, 0.554, 0.556, 0.557, 0.558, 0.559.
i hope this is helpful
Answer:
4
Step-by-step explanation:
that is the intercept of the line to y
Answer:
I think it's 28 yards gained.
Step-by-step explanation:
12 + 17 + 6 = 35
2 + 5 = 7
35 - 7 = 28
Please tell me if I'm wrong