keeping in mind that anything raised at the 0 power, is 1, with the sole exception of 0 itself.
![\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{(r^{-7}b^{-8})^0}{t^{-4}w}\implies \cfrac{1}{t^{-4}w}\implies \cfrac{1}{t^{-4}}\cdot \cfrac{1}{w}\implies t^4\cdot \cfrac{1}{w}\implies \cfrac{t^4}{w}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bnegative%20exponents%7D%0A%5C%5C%5C%5C%0Aa%5E%7B-n%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5En%7D%0A%5Cqquad%20%5Cqquad%0A%5Ccfrac%7B1%7D%7Ba%5En%7D%5Cimplies%20a%5E%7B-n%7D%0A%5Cqquad%20%5Cqquad%20a%5En%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B-n%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%28r%5E%7B-7%7Db%5E%7B-8%7D%29%5E0%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7D%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20t%5E4%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20%5Ccfrac%7Bt%5E4%7D%7Bw%7D%20)
Answer:
1, 2, 3, 4, 6, 9, 12, 18, and 36
Total mold spores at end of 9.30 am is 26901.
Step-by-step explanation:
Number of molds = 14000
Rate = 9.7% per hour
Number of hours = 12 am to 9.30 am = 9
hours
Growth of mold = 14000 * 9.7% * 9
= 12901
Total mold spores at end of 9.30 am = 14000 + 12901
= 26901
Hence, the expected number of mold spores at 9.30 am is 26901.
Answer:
Answer:
B
Step-by-step explanation:
Check the picture below.
the segment LOJ is a diameter, and therefore the arcLCJ made by that diameter will have a central angle of 180°.
that simply means that the arcLC is 180 - 94, or 86°.
the ∡LJC is an inscribed angle that is intercepting the arcLC, and therefore, by the inscribed angle theorem, it'll be half of arcLC.