Given the following table that gives data from a linear function:
![\begin {tabular} {|c|c|c|c|} Temperature, $y = f(x)$ (^\circ C)&0&5&20 \\ [1ex] Temperature, $x$ (^\circ F)&32&41&68 \\ \end {tabular}](https://tex.z-dn.net/?f=%5Cbegin%20%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATemperature%2C%20%24y%20%3D%20f%28x%29%24%20%28%5E%5Ccirc%20C%29%260%265%2620%20%5C%5C%20%5B1ex%5D%0ATemperature%2C%20%24x%24%20%28%5E%5Ccirc%20F%29%2632%2641%2668%20%5C%5C%20%0A%5Cend%20%7Btabular%7D)
The formular for the function can be obtained by choosing two points from the table and using the formular for the equation of a straight line.
Recall that the equation of a straight line is given by

Using the points (32, 0) and (41, 5), we have:
Answer:
Its the letter F
Step-by-step explanation:
Answer:
about 9cm
Step-by-step explanation:
Muliply the radius by itself: 16x16
Mulitply the answer by 3.14.
Divide 7252 by the answer to get 9
Answer:
3/4
Step-by-step explanation:
1/4 * 3 = 3/4
This is a fraction, not a mixed number
<span>
6 Find an exact value. sin 75°
</span>sin(A+B)=sin(A)cos(B)+cos(A)sin<span>(B)
</span>sin(45)=cos(45)=(2^0.5)/2 sin(30)=0.5 cos(30)=(3^0.5)/2
sin(45+30)=sin(45)cos(30)+cos(45)sin(30)=(6^0.5+2^0.5)/4
the answer is the letter d) quantity square root of six plus square root of two divided by four.
<span>
7. Find an exact value. sine of negative eleven pi divided by twelve.
</span>sin(-11pi/12) = -sin(11pi/12) = -sin(pi - pi/12) = -sin(pi/12) = -sin( (pi/6) / 2)
= - sqrt( (1-cos(pi/6) ) / 2) = -sqrt( (1-√3/2) / 2 ) = -(√3-1) / 2√2=(√2-√6)/4
the answer is the letter c) quantity square root of two minus square root of six divided by four.
<span>
8. Write the expression as the sine, cosine, or tangent of an angle. sin 9x cos x - cos 9x sin x
</span>
sin(A−B)=sinAcosB−cosAsinB
sin(9x−x)= sin9xcosx−cos9xsinx= sin(8x)
the answer is the letter c) sin 8x
<span>
9. Write the expression as the sine, cosine, or tangent of an angle. cos 112° cos 45° + sin 112° sin 45°</span>
cos(A−B)=cosAcosB<span>+sinA</span>sinB
cos(112−45)=cos112cos45<span>+sin112</span>sin45=cos(67)
the answer is the letter d) cos 67°
10. Rewrite with only sin x and cos x.
sin 2x - cos 2x
sin2x =
2sinxcosx<span>
cos2x = (cosx)^2 - (sinx)^2 = 2(cosx)^2 -1 = 1- 2(sinx)^2</span>
sin2x- cos2x=2sinxcosx-(1- 2(sinx)^2=2sinxcosx-1+2(sinx)^2
sin2x- cos2x=2sinxcosx-1+2(sinx)^2
<span>
the answer is the letter <span>
b) 2 sin x cos2x - 1
+ 2 sin2x</span></span>