Answer:
![H_1 : \mu > 24.5](https://tex.z-dn.net/?f=H_1%20%3A%20%5Cmu%20%20%3E%2024.5)
Step-by-step explanation:
From the given information:
The sample size is 28
The population mean is 24.5 (ppb)
The sample mean is 225.3 (ppb)
Thus, the null and the alternative hypothesis can be computed as:
Null hypothesis:
![H_o : \mu \le 24.5](https://tex.z-dn.net/?f=H_o%20%3A%20%5Cmu%20%5Cle%2024.5)
Alternative hypothesis:
![H_1 : \mu > 24.5](https://tex.z-dn.net/?f=H_1%20%3A%20%5Cmu%20%20%3E%2024.5)
Answer:
$54
Step-by-step explanation:
she had 6 grandchildren and she used $9 for one grandchild so we multiply
9 x 6 = $ 54
Answer: ![(\hat{p})\sim N(0.10,\ 0.017)](https://tex.z-dn.net/?f=%28%5Chat%7Bp%7D%29%5Csim%20N%280.10%2C%5C%200.017%29)
Step-by-step explanation:
Sampling distribution of the sample proportion
:
![(\hat{p})\sim N(p,\ \sqrt{\dfrac{p(1-p)}{n}})](https://tex.z-dn.net/?f=%28%5Chat%7Bp%7D%29%5Csim%20N%28p%2C%5C%20%5Csqrt%7B%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%7D%29)
The sampling distribution of the sample proportion
has mean =
and standard deviation =
.
Given : The proportion of left handed people in the population is about 0.10.
i.e. p=0.10
sample size : n= 300
Then , the sampling distribution of the sample proportion
will be :-
![(\hat{p})\sim N(0.10,\ \sqrt{\dfrac{0.10(1-0.10)}{300}})](https://tex.z-dn.net/?f=%28%5Chat%7Bp%7D%29%5Csim%20N%280.10%2C%5C%20%5Csqrt%7B%5Cdfrac%7B0.10%281-0.10%29%7D%7B300%7D%7D%29)
![(\hat{p})\sim N(0.10,\ \sqrt{0.0003})](https://tex.z-dn.net/?f=%28%5Chat%7Bp%7D%29%5Csim%20N%280.10%2C%5C%20%5Csqrt%7B0.0003%7D%29)
(approx)
Hence, the sampling distribution of the sample proportion
is ![(\hat{p})\sim N(0.10,\ 0.017)](https://tex.z-dn.net/?f=%28%5Chat%7Bp%7D%29%5Csim%20N%280.10%2C%5C%200.017%29)