Answer:
Either a or c
Step-by-step explanation:
Sorry I'm not entirely sure.
To solve this equation by elimination, what you would do is multiply one of the equations by -1, or distribute -1 to each term in the equation, any of the 2 equations. Then align the equations and add them together.
-(X + 3y = 3)
-X - 3y = -3
-X - 3y = -3
X + 6y = 3
__________
3y = 0
y = 0/3 = 0.
Now we can solve for x, by simply plugging the value of y into any of the 2 equations.
X + 6y = 3
X + 6(0) = 3
X + 0 = 3
X = 3.
The solution to your system of equations would be (3,0).
Check this by plugging in the point to the other equation and see if it is true.
X + 3y = 3
(3) + 3(0) = 3
3 + 0 = 3
3 = 3.
Thus it is the solution.
Answer: 
Step-by-step explanation:
Given Recursive formula :
, 
Then, 


We can write it as : 
such that
n 
1 
2 
3 
Hence, the required function: 
The equivalence

means that n-5 is a multiple of 12.
that is
n-5=12k, for some integer k
and so
n=12k+5
for k=-1, n=-12+5=-7
for k= 0, n=0+5=5 (the first positive integer n, is for k=0)
we solve 5000=12k+5 to find the last k
12k=5000-5=4995
k=4995/12=416.25
so check k = 415, 416, 417 to be sure we have the right k:
n=12k+5=12*415+5=4985
n=12k+5=12*416+5=4997
n=12k+5=12*417+5=5009
The last k which produces n<5000 is 416
For all k∈{0, 1, 2, 3, ....416}, n is a positive integer from 1 to 5000,
thus there are 417 integers n satisfying the congruence.
Answer: 417