First, we establish
our hypothesis:
<span>Null hypothesis H0: μ = $1.00 </span>
Alternative hypothesis
Ha: μ ≠ $1.00
<span>Let’s say X = the sample average cost of a daily newspaper
= 0.96</span>
u = population mean
cost = 1.00
S = sample standard
deviation = 0.18
Calculating for z
value:
z = (X – u) / S
z = (0.96 – 1) / 0.18
z = – 0.222
From the standard
distribution table at this z value, p-value = 0.4129
Since alpha = 0.01,
the decision therefore is:
<span>Do not reject the null
hypothesis because the p-value is greater than 0.01. There is enough evidence
to support the claim that the mean cost of newspapers is $1. </span>
4222.3 is the volume of the cylinder. If you want me to explain step-by-step just comment.
What are you talking about
From the identity:


the inverse of f is g such that f(g(x))=x,
we must find g(x), such that
![\frac{1}{cos[g(x)]}=x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bcos%5Bg%28x%29%5D%7D%3Dx%20)
thus,
![cos[g(x)]= \frac{1}{x}](https://tex.z-dn.net/?f=cos%5Bg%28x%29%5D%3D%20%5Cfrac%7B1%7D%7Bx%7D%20)

Answer: b. g(x)=cos^-1(1/x)