The answer is A
hope you found this usefull
Answer:
d.
Step-by-step explanation:
i looked at the graph!
Answer:
> a<-rnorm(20,50,6)
> a
[1] 51.72213 53.09989 59.89221 32.44023 47.59386 33.59892 47.26718 55.61510 47.95505 48.19296 54.46905
[12] 45.78072 57.30045 57.91624 50.83297 52.61790 62.07713 53.75661 49.34651 53.01501
Then we can find the mean and the standard deviation with the following formulas:
> mean(a)
[1] 50.72451
> sqrt(var(a))
[1] 7.470221
Step-by-step explanation:
For this case first we need to create the sample of size 20 for the following distribution:

And we can use the following code: rnorm(20,50,6) and we got this output:
> a<-rnorm(20,50,6)
> a
[1] 51.72213 53.09989 59.89221 32.44023 47.59386 33.59892 47.26718 55.61510 47.95505 48.19296 54.46905
[12] 45.78072 57.30045 57.91624 50.83297 52.61790 62.07713 53.75661 49.34651 53.01501
Then we can find the mean and the standard deviation with the following formulas:
> mean(a)
[1] 50.72451
> sqrt(var(a))
[1] 7.470221
A^2 + b^2 = c^2.....a and b are the legs and c is the hypotenuse
so u would use : 20^2 + 21^2 = 29^2
Broo it’s blank for me....