A. Total Revenue (R) is equal to price per dive (P) multiplied by number of customers (C). We can write
.
Per price increase is $20. So four price increase is $
. Hence, price per dive is 100+80=$180.
Also per price increase, 2 customers are reduced from 30. For 4 price increases,
customers are reduced. Hence, total customers is
.
So Total Revenue is:

B. Each price increase is 20. So x price increase is 20x. Hence, new price per dive would be equal to the sum of 100 and 20x.
Also per price increase, customers decrease by 2. So per x price increases, the customer decrease is 2x. Hence, new number of customers is the difference of 30 and 2x.
Therefor we can write the quadratic equation for total revenue as the new price times the new number of customers.

C. We are looking for the point (x) at which the equation modeled in part (B) gives a maximum value of revenue (y). That x value is given as
, where a is the coefficient of
and b is the coefficient of x. So we have,

That means, the greatest revenue is achieved after 5 price increases. Each price increase was 20, so 5 price increase would be
. So the price that gives the greatest revenue is
.
ANSWERS:
A. $3960
B. 
C. $200
Division using multiples of 10 is different than how most of us learned how to divide. <span>The idea of multiple is what number can 10 go into without a remainder. That is easy. Ten ends in a zero. Thus 10 goes into numbers ending in zero. An example is 60. Ten ends in a zero; 60 ends in a zero. It will divide evenly. </span>
Answer:
the answer is 60
Step-by-step explanation:
4*5*3=60
27.5 / 3.5 = 7.86; The average yearly snowfall was 7.86 inches.
Answer:
The 98% confidence interval for the mean number of hours of study time per week for all students is (20.9, 25.1).
Step-by-step explanation:
Confidence interval:
Sample mean plus/minus the margin of error.
In this question:
Mean of 23.
Margin of error 2.1.
Then
23 - 2.1 = 20.9
23 + 2.1 = 25.1
The 98% confidence interval for the mean number of hours of study time per week for all students is (20.9, 25.1).