<h3>✽ - - - - - - - - - - - - - - - ~<u>Hello There</u>!~ - - - - - - - - - - - - - - - ✽</h3>
➷ Use this formula:
final = original x multiplier^n
n would be the number of years
First to calculate the multiplier:
6/100 = 0.06
1 + 0.06 = 1.06
Substitute the values in:
final = 10000 x 1.06^5
Solve:
final = 13382.25578
Your answer is $13382.25
<h3><u>
✽</u></h3>
➶ Hope This Helps You
➶ Good Luck
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Answer:
the solution is n=101.4i or n+507/5 i
Step-by-step explanation:
Answer:
11.1 years
Step-by-step explanation:
The formula for interest compounding continuously is:

Where A(t) is the amount after the compounding, P is the initial deposit, r is the interest rate in decimal form, and t is the time in years. Filling in what we have looks like this:

We will simplify this first a bit by dividing 2000 by 1150 to get

To get that t out the exponential position it is currently in we have to take the natural log of both sides. Since a natural log has a base of e, taking the natual log of e cancels both of them out. They "undo" each other, for lack of a better way to explain it. That leaves us with
ln(1.739130435)=.05t
Taking the natural log of that decimal on our calculator gives us
.5533852383=.05t
Now divide both sides by .05 to get t = 11.06770477 which rounds to 11.1 years.
Step-by-step explanation:
<u>Given equation:</u>
a. write a second equation so that (1,3) is the only solution of the system
To have only one solution the equation must have a different slope.
<u>Let it be 10, then the y-intercept of y = 10x + b is:</u>
<u>And the equation:</u>
b. Write a second equation so that the system has infinitely many solutions
<u>To have infinitely many solutions, both equations must be same:</u>
c. Write a second equation so that the system has no solutions.
<u>To have no solutions, the equations must have same slope but different y-intercepts:</u>