Answer:
SA = 904 in.²
Step-by-step explanation:
Surface Area (SA) of a cuboid: 2(lw) + 2(wh) + 2(hl)
SA = 2(lw) + 2(wh) + 2(hl)
- l = 36 in.
- w = 10 in.
- h = 2 in.
Substitute the given values and multiply:
SA = 2(lw) + 2(wh) + 2(hl)
SA = 2(36)(10) + 2(10)(2) + 2(2)(36)
SA = 2(360) + 2(20) + 2(72)
SA = 720 + 40 + 144
SA = 904 in.²
Hope this helps!
Answer: option d. x = 3π/2Solution:function y = sec(x)
1) y = 1 / cos(x)
2) When cos(x) = 0, 1 / cos(x) is not defined
3) cos(x) = 0 when x = π/2, 3π/2, 5π/2, 7π/2, ...
4) limit of sec(x) = lim of 1 / cos(x).
When x approaches π/2, 3π/2, 5π/2, 7π/2, ... the limit →+/- ∞.
So, x = π/2, x = 3π/2, x = 5π/2, ... are vertical asymptotes of sec(x).
Answer: 3π/2
The figures attached will help you to understand the graph and the existence of multiple asymptotes for y = sec(x).
The answer is J, t = 1/9u
Answer:
C i think
Step-by-step explanation: