The answer is 296,000,000.
Answer:
- 5/13
Step-by-step explanation:
tans = 5/12 = height/base
Using Pythagoras, hypotenuse = √12² + 5² = 13
Therefore coss had to be 12/13
But since cos s < 0, cos s = - 12/13
Thus,
tanA = sinA/cosA
tanA cosA = sinA
(5/12)(- 12/13) = sinA
- 5/13 = sinA
I just learned that a rhombus has equal opposite equal acute angles, opposite equal obtuse angles, and four equal sides. That means y is equal to all the sides! Angle x is 61° and y = 16 in
Answer:
![\sin\,\theta =-\frac{\sqrt{21} }{5}](https://tex.z-dn.net/?f=%5Csin%5C%2C%5Ctheta%20%3D-%5Cfrac%7B%5Csqrt%7B21%7D%20%7D%7B5%7D)
![\tan\,\theta =\frac{\sqrt{21} }{2}](https://tex.z-dn.net/?f=%5Ctan%5C%2C%5Ctheta%20%3D%5Cfrac%7B%5Csqrt%7B21%7D%20%7D%7B2%7D)
![\sec\,\theta = \frac{-5}{2}](https://tex.z-dn.net/?f=%5Csec%5C%2C%5Ctheta%20%3D%20%5Cfrac%7B-5%7D%7B2%7D)
![cosec\,\theta =\frac{-5}{\sqrt{21} }](https://tex.z-dn.net/?f=cosec%5C%2C%5Ctheta%20%3D%5Cfrac%7B-5%7D%7B%5Csqrt%7B21%7D%20%7D)
![\cot\,\theta =\frac{2}{\sqrt{21} }](https://tex.z-dn.net/?f=%5Ccot%5C%2C%5Ctheta%20%3D%5Cfrac%7B2%7D%7B%5Csqrt%7B21%7D%20%7D)
Step-by-step explanation:
![\cos\theta =\frac{-2}{5}](https://tex.z-dn.net/?f=%5Ccos%5Ctheta%20%3D%5Cfrac%7B-2%7D%7B5%7D%3C0%5C%5Csin%5Ctheta%20%3C0)
As both
,
lies in the third quadrant.
In the third quadrant,
![\sin\theta](https://tex.z-dn.net/?f=%5Csin%5Ctheta%3C0%2C%5C%2C%5Ccos%5C%2C%5Ctheta%20%3C0%5C%2C%2C%5C%2C%5Csec%5C%2C%5Ctheta%3C0%2C%5C%2Ccosec%5Ctheta%3C0%2C%5C%2Ctan%5C%2C%5Ctheta%3E0%2C%5C%2Ccot%5C%2C%5Ctheta%3E0)
![\sin\,\theta =-\sqrt{1-\cos^2\,\theta} \\=-\sqrt{1-(\frac{-2}{5})^2 } \\\\=-\sqrt{1-\frac{4}{25} }\\\\=-\sqrt{\frac{25-4}{25} }\\\\=-\frac{\sqrt{21} }{5}](https://tex.z-dn.net/?f=%5Csin%5C%2C%5Ctheta%20%3D-%5Csqrt%7B1-%5Ccos%5E2%5C%2C%5Ctheta%7D%20%5C%5C%3D-%5Csqrt%7B1-%28%5Cfrac%7B-2%7D%7B5%7D%29%5E2%20%7D%20%5C%5C%5C%5C%3D-%5Csqrt%7B1-%5Cfrac%7B4%7D%7B25%7D%20%7D%5C%5C%5C%5C%3D-%5Csqrt%7B%5Cfrac%7B25-4%7D%7B25%7D%20%7D%5C%5C%5C%5C%3D-%5Cfrac%7B%5Csqrt%7B21%7D%20%7D%7B5%7D)
![\tan\,\theta = \frac{\sin\,\theta}{\cos\,\theta }\\\\=\frac{\frac{-\sqrt{21} }{5} }{\frac{-2}{5} }\\\\=\frac{\sqrt{21} }{2}](https://tex.z-dn.net/?f=%5Ctan%5C%2C%5Ctheta%20%3D%20%5Cfrac%7B%5Csin%5C%2C%5Ctheta%7D%7B%5Ccos%5C%2C%5Ctheta%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Cfrac%7B-%5Csqrt%7B21%7D%20%7D%7B5%7D%20%7D%7B%5Cfrac%7B-2%7D%7B5%7D%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%7B21%7D%20%7D%7B2%7D)
![\sec\,\theta =\frac{1}{\cos\,\theta }\\\\=\frac{1}{\frac{-2}{5} }\\\\=\frac{-5}{2}](https://tex.z-dn.net/?f=%5Csec%5C%2C%5Ctheta%20%3D%5Cfrac%7B1%7D%7B%5Ccos%5C%2C%5Ctheta%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B-2%7D%7B5%7D%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B-5%7D%7B2%7D)
![\ cosec \,\theta = \frac{1}{sin\,\theta }\\\\=\frac{1}{\frac{-\sqrt{21} }{5} }\\\\=\frac{-5}{\sqrt{21} }](https://tex.z-dn.net/?f=%5C%20cosec%20%5C%2C%5Ctheta%20%3D%20%5Cfrac%7B1%7D%7Bsin%5C%2C%5Ctheta%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B-%5Csqrt%7B21%7D%20%7D%7B5%7D%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B-5%7D%7B%5Csqrt%7B21%7D%20%7D)
![\cot\,\theta =\frac{1}{\tan\,\theta}\\\\=\frac{1}{\frac{\sqrt{21} }{2} }\\\\=\frac{2}{\sqrt{21} }](https://tex.z-dn.net/?f=%5Ccot%5C%2C%5Ctheta%20%3D%5Cfrac%7B1%7D%7B%5Ctan%5C%2C%5Ctheta%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Csqrt%7B21%7D%20%7D%7B2%7D%20%7D%5C%5C%5C%5C%3D%5Cfrac%7B2%7D%7B%5Csqrt%7B21%7D%20%7D)