Answer:
The negative sign represents the flow of charge in an opposite direction relative to point of action.
A fundamental article cannot be Accelerated
Answer:
6.65m/s
Explanation:
Using the equation of motion
S = ut + 1/2gt²
S is the height of fall
t is the time
u is the horizontal velocity
g is the acceleration due to gravity
Given
S = 300 + 50
S = 350m
t = 7.8seconds
g = 9.8m/s^2
Get S
S = 7.8u + 1/2(9.8)(7.8)²
S = 7.8u + 298.116
350 = 7.8u + 298.116
7.8u = 350 - 298.116
7.8u = 51.884
u = 51.884/7.8
u = 6.65m/s
Hence the rock's horizontal velocity was 6.65m/s
Answer:
V = -RC (dV/dt)
Solving the differential equation,
V(t) = V₀ e⁻ᵏᵗ
where k = RC
Explanation:
V(t) = I(t) × R
The Current through the capacitor is given as the time rate of change of charge on the capacitor.
I(t) = -dQ/dt
But, the charge on a capacitor is given as
Q = CV
(dQ/dt) = (d/dt) (CV)
Since C is constant,
(dQ/dt) = (CdV/dt)
V(t) = I(t) × R
V(t) = -(CdV/dt) × R
V = -RC (dV/dt)
(dV/dt) = -(RC/V)
(dV/V) = -RC dt
∫ (dV/V) = ∫ -RC dt
Let k = RC
∫ (dV/V) = ∫ -k dt
Integrating the the left hand side from V₀ (the initial voltage of the capacitor) to V (the voltage of the resistor at any time) and the right hand side from 0 to t.
In V - In V₀ = -kt
In(V/V₀) = - kt
(V/V₀) = e⁻ᵏᵗ
V = V₀ e⁻ᵏᵗ
V(t) = V₀ e⁻ᵏᵗ
Hope this Helps!!!