Answer:
A) greater
Explanation:
acceleration is calculated by dividing velocity over time..so by calculating, you find acceleration of A is greater than that of B
Answer:
First Quarter and Third Quarter.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the Moon across to the Earth sphere.
Since gravity variates with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, seeing the image below, point A is closer to the Moon than point b, and at the same time the center of mass of the Earth will feel more attracted to the Moon than point B. Therefore, that creates a tidal bulge in point A and point B.
When the Sun and the Moon are alight with respect to the Earth, then the Sun tidal force contributes to the tidal force of the Moon over the Earth. That makes the high tides even higher (spring tides).
However, when the Sun is not in the same line than the Moon (the Moon is at 90° with respect to the Sun), then the low tides are higher and the high tides are lower. That scenario is known as neap tides.
Therefore, that happens when the Moon is at First Quarter and Third Quarter.
Answer:
No
Explanation:
The force of tension exerted by the string on the rock acts as centripetal force, so its direction is always towards the centre of the circle.
However, the direction of motion of the rock is always tangential to the circle: this means that the force is always perpendicular to the direction of motion of the rock.
As we know, the work done by a force on an object is

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the force and the displacement
In this situation, F and d are perpendicular, so
, therefore
and the work done is zero:

The equilibrium constant will be lowered and the equilibrium will shift to the left if the heat being produced is not removed.