Answer:
3.68 m/s
Explanation:
Full answer in the attached picture
There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵
Explanation:
The given data is as follows.
F = 
q = 
v = 385 m/s
= 0.876
Now, we will calculate the magnitude of magnetic field as follows.
B = 
= 
=
T
= 10.65 T
Thus, we can conclude that magnitude of the magnetic field is 10.65 T.
Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.