Answer:
8.60 g/cm³
Explanation:
In the lattice structure of iron, there are two atoms per unit cell. So:
where
an and A is the atomic mass of iron.
Therefore:

This implies that:

= 
Assuming that there is no phase change gives:

= 8.60 g/m³
Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:

<em>where
: is the photon energy,
: are the rest energies of the proton and the antiproton, respectively, equals to m₀c²,
: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:

Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Plate tectonics<span>is a </span>scientific theory<span> that describes the large-scale motion of </span>Earth<span>'s </span>lithosphere<span>. This theoretical model builds on the concept of </span>continental drift<span> which was developed during the first few decades of the 20th century. The </span>geoscientific<span> community accepted plate-tectonic theory after </span>seafloor spreading was validated in the late 1950s and early 1960s.<span>The lithosphere, which is the rigid outermost shell of a planet (the crust and upper mantle), is broken up into </span>tectonic plates<span>. </span>
Answer:
<h2>39.2 m</h2>
Explanation:
The height of the hill side can be found by using the formula

p is the potential energy
m is the mass
From the question we have

We have the final answer as
<h3>39.2 m</h3>
Hope this helps you