Answer:
Step-by-step explanation:
Altura = 11.312 pies
i) La escalera que descansa contra la pared formará un triángulo en ángulo recto.
ii) la escalera formará la hipotenusa del triángulo rectángulo dado por h = 12 pies.
iii) La base está dada por 4 pies.
iv) de la fórmula del triángulo en ángulo recto.
base = 
The answer to (-4.5)(-6)(5.4)= 137.7
Answer:
123.5 square inches
Step-by-step explanation:
Given: To find the area of a rectangle, you have to multiply base times height.
To find the area of a triangle, you have to do base times height devided by 2.
Finding the area: Let's break up this shape into polygons. At the bottom there is a rectangle. We know that to find the area of the rectangle you have to do base times height. 13in•7in will give you <u>91in</u> square for the rectangle.
Now for the triangle. If you can see, if you break the triangle in half, there are 2 right triangles. Let's look at the right one for now. Since we know that to find the area of a triangle you have to do base times height divided by 2, you do 5in•6.5in=32.5in. 32.5in divided by 2 is <u>16.25in </u>square which is the area of one triangle. You might be wondering why i did 5•6.5, and that's because at the bottom of the rectangle you can see it's 13in, and 13in÷2=6.5in.
We already found the area of the rectangle and one triangle. The other triangle is equal to it so we can just do 16.25+16.25=<u>32.5in</u> square for both of the triangles.
Now we add it all up: 32.5+91=123.5 square inches
Answer:
m∠N = 51°
m∠M = 31°
m∠O = 98°
Step-by-step explanation:
It is given that ΔMNO is an isosceles triangle with base NM.
m∠N = (4x + 7)° and m∠M = (2x + 29)°
By the property of an isosceles triangle,
Two legs of an isosceles triangle are equal in measure.
ON ≅ OM
And angles opposite to these equal sides measure the same.
m∠N = m∠M
(4x + 7) = (2x + 29)
4x - 2x = 29 - 7
2x = 22
x = 11
m∠N = (4x + 7)° = 51°
m∠M = (2x + 9)° = 31°
m∠O = 180° - (m∠N + m∠M)
= 180° - (51° + 31°)
= 180° - 82°
= 98°
Answer:
I'm going to edit this later, but do you have the full question?