The answer is D. Enzymes in the body need to be around the pH level of 7 to function best, and if the blood drifts too far away, some enzymes stop working all together
Answer:
25% of the heterozygous cross are short, and the offspring of a homozygous dominant and homozygous recessive pea plant will always display the dominant trait (phenotype), because they are heterozygous.
Explanation:
In this explanation, I'm assuming that the allele "T" for tall plants is dominant to the allele "t" for short plants, like in Gregor Mendel's pea plant experiment.
A homozygous tall pea plant will have the genotype "TT" and a homozygous short plant will have the genotype "tt" because homozygous means that both alleles are identical. Since "T" is dominant over "t", any plant with at least one "T" allele will be tall (the dominant trait), regardless of what the other allele is. Let's look at a Punnett square for this cross:
Explanation:
ATP stores and transports energy in the cells, usually in the mitochondria. Energy is released by hydrolysis (carbohydrates being broken down into sugar molecules), which eventually results in forming ADP (adenosine diphosphate) that absorbs the energy and recharges the phosphate group and ATP
<u>Answer:</u>
<em> heat is released by the combustion of of methane</em>
<u>Explanation:</u>
The value of enthalpy determines whether the reaction is exothermic or endothermic. If the enthalpy change is positive, then the reaction is endothermic (heat or energy released) and if the enthalpy change is negative then the reaction is exothermic (heat or energy absorbed).
=
<em>In this question, </em><em>the enthalpy of formation</em><em> has positive value and hence the </em><em>reaction is endothermic</em><em> in which the heat is released.
</em>