Answer:
arc DB length = 14π feet
Step-by-step explanation:
Assuming point A is the center of the circle, arc DC has measure 180°. Arc DB has measure 40° less, so is 140°. Since you want this in terms of π, we need to convert the degree measure to radians. We do that by multiplying by (π/180) radians per degree:
arc DB = 140° = 140°(π/180°) radians
__
Now that we know the arc measure in radians, we can find the length of the arc. It is given by the formula ...
s = rθ
where r represents the radius and θ is the measure of the arc in radians.
The arc length is ...
s = (18 ft)(7π/9) = 14π ft
Arc DB has a length of 14π feet.
you re-write your eq as:
dx/dy -4(x/y) = 4y^5
the integrating factor is:
<span><span>e<span>−4∫dy/y</span></span>=1/<span>y^4
now solve it</span></span>
4+2 (4,8)=13,6$
4+2 (7,3)=18,6$
the total amount the taxi will make from these 2trips : 13,6+18,6=32,2$
Answer:
The answer is translation :)
let's first off convert the mixed fractions to improper fractions, and then get its volume, bearing in mind that the radius is half the diameter.
![\stackrel{mixed}{19\frac{3}{4}}\implies \cfrac{19\cdot 4+3}{4}\implies \stackrel{improper}{\cfrac{79}{4}} ~\hfill \stackrel{mixed}{1\frac{2}{5}}\implies \cfrac{1\cdot 5+2}{5}\implies \stackrel{improper}{\cfrac{7}{5}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B19%5Cfrac%7B3%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B19%5Ccdot%204%2B3%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B79%7D%7B4%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B2%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%205%2B2%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B7%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ h=\frac{79}{4}\\[1em] r=\frac{7}{5}\cdot \frac{1}{2}\\ \qquad \frac{7}{10} \end{cases}\implies \begin{array}{llll} V=\pi \left( \cfrac{7}{10} \right)^2\left( \cfrac{79}{4} \right)\\\\ V=(3.14) \left( \cfrac{7}{10} \right)^2\left( \cfrac{79}{4} \right)\\\\ V\approx 30.39 \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%20V%3D%5Cpi%20r%5E2%20h~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D%5Cfrac%7B79%7D%7B4%7D%5C%5C%5B1em%5D%20r%3D%5Cfrac%7B7%7D%7B5%7D%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%20%5Cqquad%20%5Cfrac%7B7%7D%7B10%7D%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20V%3D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B7%7D%7B10%7D%20%5Cright%29%5E2%5Cleft%28%20%5Ccfrac%7B79%7D%7B4%7D%20%5Cright%29%5C%5C%5C%5C%20V%3D%283.14%29%20%5Cleft%28%20%5Ccfrac%7B7%7D%7B10%7D%20%5Cright%29%5E2%5Cleft%28%20%5Ccfrac%7B79%7D%7B4%7D%20%5Cright%29%5C%5C%5C%5C%20V%5Capprox%2030.39%20%5Cend%7Barray%7D)