Not sure what simp lies firm is
Answer:

Step-by-step explanation:
The original questions is suppose an ant walks counterclockwise on a unit circle from the point (1,0) to the endpoint of the radius that forms an angle of 240 degrees with the positive horizontal axis.
To find the distance ant walked we find the arc length of the sector with central angle 240 degree and radius =1 (unit circle)
arc length of a sector =
arc length of a sector =
arc length of a sector =

Check the picture below, so, that'd be the square inscribed in the circle.
so... hmm the diagonals for the square are the diameter of the circle, and keep in mind that the radius of a circle is half the diameter, so let's find the diameter.
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -2}}\quad ,&{{ 5}})\quad % (c,d) &({{ -8}}\quad ,&{{ -3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-8-(-2)]^2+[-3-5]^2} \\\\\\ d=\sqrt{(-8+2)^2+(-3-5)^2}\implies d=\sqrt{(-6)^2+(-8)^2} \\\\\\ d=\sqrt{36+64}\implies d=\sqrt{100}\implies d=10](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%20-3%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-8-%28-2%29%5D%5E2%2B%5B-3-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-8%2B2%29%5E2%2B%28-3-5%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-6%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B36%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B100%7D%5Cimplies%20d%3D10)
that means the radius r = 5.
now, what's the center? well, the Midpoint of the diagonals, is really the center of the circle, let's check,

so, now we know the center coordinates and the radius, let's plug them in,
Answer:
The slope is (1/5)
Step-by-step explanation:
See attached