1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
14

Please help me with this homework

Mathematics
2 answers:
stich3 [128]3 years ago
6 0
The hypotenuse is 25m
IRINA_888 [86]3 years ago
5 0
The answer will be 5m
You might be interested in
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
I don’t know the last one :( help
klasskru [66]
Letter m

Brainliest? Yo
5 0
4 years ago
Read 2 more answers
The set of irrational numbers is the set of numbers whose decimal representations are neither (blank) nor (blank).
sergejj [24]

Answer:

neither terminating nor repeating.

Step-by-step explanation:

6 0
3 years ago
Galina is finding the area of triangle RST. To do so, she follows the steps in the table.
vladimir1956 [14]

1 step: to draw a rectangle around triangle RST, you should

  • draw points A(-1,-1), B(-1,3) and C(2,3);
  • connect points A, B, C and T consecutively.

2 step: rectangle ABCT has length AB=4 units and width BC=3 units. Then

A_{ABCT}=4\cdot 3=12 sq. un.

3 step:

A_{\triangle ART}=\dfrac{1}{2}AR\cdot AT=\dfrac{1}{2}\cdot 2\cdot 3=3 sq. un.

A_{\triangle BRS}=\dfrac{1}{2}BR\cdot BS=\dfrac{1}{2}\cdot 2\cdot 2=2 sq. un.

A_{\triangle SCT}=\dfrac{1}{2}CS\cdot CT=\dfrac{1}{2}\cdot 1\cdot 4=2 sq. un.

4 step:

A_{\triangle RST}=A_{ABCT}-A_{\triangle ART}-A_{\triangle BRS}-A_{\triangle SCT}=12-3-2-2=5 sq. un.

Answer: in step two you write dimensions of rectangle ABCT: length 4 units and width 3 units. Correct choice is B.

8 0
4 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=f%5Cleft%28x%5Cright%29%3D%5Cfrac%7B%5Cleft%28x%5E%7B3%7D%2B8x%5E%7B2%7D%2B21x%2B18%5Cright%29
scoundrel [369]

Answer:

f = \frac{x^{3}+8x^{2}+39}{x^{2}+3x }

Step-by-step explanation:

Solved for f!

8 0
3 years ago
Other questions:
  • What is the Factor −14 out of −12x−54y.
    12·1 answer
  • Pls answer this with an explanation if you can
    5·2 answers
  • An ice cream factory makes 330 quarts of ice cream in 5 hours. How many quarts could be made in 12 hours?
    14·1 answer
  • The prism is completely filled with 1750 cubes that have edge length of 15 ft.
    12·1 answer
  • Use the distributive property to simplify 4/5(1 -4m) completely
    6·2 answers
  • Elyssa works as an assistant coach. She earns $10.95 per hour. How much will she get
    13·1 answer
  • Add<br> to each side x2 - 8x = 9 to complete<br> the square.
    14·2 answers
  • The radius of circle A is r cm. The radius of circle B is twice the radius of circle A. What difference between the circumferenc
    12·1 answer
  • QUICK!!<br><br> Which equation represents the relationship shown in the graph??
    6·2 answers
  • Please help!!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!