1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
5

8 x

ex-formula"> is how many times as great as 4 x 10^{-6}
Mathematics
1 answer:
schepotkina [342]3 years ago
6 0
0.003- 0.000004= 0.002996
You might be interested in
What number has the same value as 20 tens
shutvik [7]
200 because 20 times 10 is 200
7 0
3 years ago
Read 2 more answers
Find the area of the region that lies inside the first curve and outside the second curve.
marishachu [46]

Answer:

Step-by-step explanation:

From the given information:

r = 10 cos( θ)

r = 5

We are to find the  the area of the region that lies inside the first curve and outside the second curve.

The first thing we need to do is to determine the intersection of the points in these two curves.

To do that :

let equate the two parameters together

So;

10 cos( θ) = 5

cos( θ) = \dfrac{1}{2}

\theta = -\dfrac{\pi}{3}, \ \  \dfrac{\pi}{3}

Now, the area of the  region that lies inside the first curve and outside the second curve can be determined by finding the integral . i.e

A = \dfrac{1}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} (10 \ cos \  \theta)^2 d \theta - \dfrac{1}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \ \  5^2 d \theta

A = \dfrac{1}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} 100 \ cos^2 \  \theta  d \theta - \dfrac{25}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \ \   d \theta

A = 50 \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \begin {pmatrix}  \dfrac{cos \ 2 \theta +1}{2}  \end {pmatrix} \ \ d \theta - \dfrac{25}{2}  \begin {bmatrix} \theta   \end {bmatrix}^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}}

A =\dfrac{ 50}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \begin {pmatrix}  {cos \ 2 \theta +1}  \end {pmatrix} \ \    d \theta - \dfrac{25}{2}  \begin {bmatrix}  \dfrac{\pi}{3} - (- \dfrac{\pi}{3} )\end {bmatrix}

A =25  \begin {bmatrix}  \dfrac{sin2 \theta }{2} + \theta \end {bmatrix}^{\dfrac{\pi}{3}}_{\dfrac{\pi}{3}}    \ \ - \dfrac{25}{2}  \begin {bmatrix}  \dfrac{2 \pi}{3} \end {bmatrix}

A =25  \begin {bmatrix}  \dfrac{sin (\dfrac{2 \pi}{3} )}{2}+\dfrac{\pi}{3} - \dfrac{ sin (\dfrac{-2\pi}{3}) }{2}-(-\dfrac{\pi}{3})  \end {bmatrix} - \dfrac{25 \pi}{3}

A = 25 \begin{bmatrix}   \dfrac{\dfrac{\sqrt{3}}{2} }{2} +\dfrac{\pi}{3} + \dfrac{\dfrac{\sqrt{3}}{2} }{2} +   \dfrac{\pi}{3}  \end {bmatrix}- \dfrac{ 25 \pi}{3}

A = 25 \begin{bmatrix}   \dfrac{\sqrt{3}}{2 } +\dfrac{2 \pi}{3}   \end {bmatrix}- \dfrac{ 25 \pi}{3}

A =    \dfrac{25 \sqrt{3}}{2 } +\dfrac{25 \pi}{3}

The diagrammatic expression showing the area of the region that lies inside the first curve and outside the second curve can be seen in the attached file below.

Download docx
7 0
3 years ago
Helpppp pls. Rotate traingle TUV 90 degrees clockwise around the origin
lutik1710 [3]
T -1,-1 ect ect hope helps
7 0
2 years ago
Jenny and Natalie are selling cheesecakes for a school fundraiser. Customers can buy chocolate cakes and vanilla cakes. Jenny so
IrinaVladis [17]

The cost of 1 chocolate cake is $ 6 and cost of 1 vanilla cake is $ 7

<em><u>Solution:</u></em>

Let "c" be the cost of 1 chocolate cake

Let "v" be the cost of 1 vanilla cake

<em><u>Jenny sold 14 chocolate cakes and 5 vanilla cakes for 119 dollars</u></em>

Therefore, we can frame a equation as:

14 x cost of 1 chocolate cake + 5 x cost of 1 vanilla cake = 119

14 \times c + 5 \times v=119

14c + 5v = 119 ------- eqn 1

<em><u>Natalie sold 10 chocolate cakes and 10 vanilla cakes for 130 dollars</u></em>

Therefore, we can frame a equation as:

10 x cost of 1 chocolate cake + 10 x cost of 1 vanilla cake = 130

10 \times c + 10 \times v = 130

10c + 10v = 130 -------- eqn 2

<em><u>Let us solve eqn 1 and eqn 2</u></em>

Multiply eqn 1 by 2

28c + 10v = 238 ------ eqn 3

<em><u>Subtract eqn 2 from eqn 3</u></em>

28c + 10v = 238

10c + 10v = 130

( - ) --------------------------

18c = 108

c = 6

<em><u>Substitute c = 6 in eqn 1</u></em>

14(6) + 5v = 119

84 + 5v = 119

5v = 119 - 84

5v = 35

v = 7

Thus cost of 1 chocolate cake is $ 6 and cost of 1 vanilla cake is $ 7

8 0
3 years ago
PLEASE HELP I NEED SOMEBODY TO PARAPHRASE THIS FOR ME! I'LL MARK BRAINLIEST!! 50 POINTS!!!
Mrrafil [7]
3x + 4 = 2x + 2
3x - 2x = 2 - 4
x = -2
one solution
3 0
3 years ago
Read 2 more answers
Other questions:
  • The diameter of a circle is 4 meters. What is the circle's circumference?
    12·1 answer
  • When making a statistical inference about the mean of normally distributed population based on the samples drawn from the popula
    12·1 answer
  • why does a whole number divided by a fraction less than one have a quotient greater than one number dividend?
    12·1 answer
  • Solve the inequality for x: 2x+3&lt;23
    11·2 answers
  • Solve for c.<br><br><br><br> c−1.5+6.8=0.6
    10·2 answers
  • Find the circuference of 10mm<br><br> i need help
    10·2 answers
  • What is the point-slope equation of a line if the slope is 3 and it passes through the point (-9, 2
    6·1 answer
  • Name the triangle congruent to triangle ABC.
    5·1 answer
  • What is 15+3(2x-4)-4x can you help please
    5·1 answer
  • What is the distance between 3 and 1?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!