1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
2 years ago
9

Simplify the Polynomial and please show your work so I can do more on my own.

Mathematics
1 answer:
zheka24 [161]2 years ago
7 0

Answer:

no

Step-by-step explanation:

You might be interested in
A raiz da equação 2x - 1 = - 3, é: ( U = Z)
motikmotik

Answer:

A raiz da equação 2x - 1 = - 3, é: ( U = Z)

Step-by-step explanation:

7 0
2 years ago
Find the value of x. Enter your answer as a number
tensa zangetsu [6.8K]
A whole circle is 360 degrees. So add up the known degrees (115+105+60)=280degrees
Then 360-280=80 degrees
8 0
2 years ago
What's the flux of the vector field F(x,y,z) = (e^-y) i - (y) j + (x sinz) k across σ with outward orientation where σ is the po
emmasim [6.3K]
\displaystyle\iint_\sigma\mathbf F\cdot\mathrm dS
\displaystyle\iint_\sigma\mathbf F\cdot\mathbf n\,\mathrm dS
\displaystyle\iint_\sigma\mathbf F\cdot\left(\frac{\mathbf r_u\times\mathbf r_v}{\|\mathbf r_u\times\mathbf r_v\|}\right)\|\mathbf r_u\times\mathbf r_v\|\,\mathrm dA
\displaystyle\iint_\sigma\mathbf F\cdot(\mathbf r_u\times\mathbf r_v)\,\mathrm dA

Since you want to find flux in the outward direction, you need to make sure that the normal vector points that way. You have

\mathbf r_u=\dfrac\partial{\partial u}[2\cos v\,\mathbf i+\sin v\,\mathbf j+u\,\mathbf k]=\mathbf k
\mathbf r_v=\dfrac\partial{\partial v}[2\cos v\,\mathbf i+\sin v\,\mathbf j+u\,\mathbf k]=-2\sin v\,\mathbf i+\cos v\,\mathbf j

The cross product is

\mathbf r_u\times\mathbf r_v=\begin{vmatrix}\mathbf i&\mathbf j&\mathbf k\\0&0&1\\-2\sin v&\cos v&0\end{vmatrix}=-\cos v\,\mathbf i-2\sin v\,\mathbf j

So, the flux is given by

\displaystyle\iint_\sigma(e^{-\sin v}\,\mathbf i-\sin v\,\mathbf j+2\cos v\sin u\,\mathbf k)\cdot(\cos v\,\mathbf i+2\sin v\,\mathbf j)\,\mathrm dA
\displaystyle\int_0^5\int_0^{2\pi}(-e^{-\sin v}\cos v+2\sin^2v)\,\mathrm dv\,\mathrm du
\displaystyle-5\int_0^{2\pi}e^{-\sin v}\cos v\,\mathrm dv+10\int_0^{2\pi}\sin^2v\,\mathrm dv
\displaystyle5\int_0^0e^t\,\mathrm dt+5\int_0^{2\pi}(1-\cos2v)\,\mathrm dv

where t=-\sin v in the first integral, and the half-angle identity is used in the second. The first integral vanishes, leaving you with

\displaystyle5\int_0^{2\pi}(1-\cos2v)\,\mathrm dv=5\left(v-\dfrac12\sin2v\right)\bigg|_{v=0}^{v=2\pi}=10\pi
5 0
3 years ago
Find the difference. Simplify the
Novay_Z [31]

D

Step-by-step explanation:

you subtract 15 and 11 = 4 then subtract 9-1 is 8 and then you find the common denominator

4 0
2 years ago
Which geometric concept is most useful when explaining the effect of a rotation on a segment
sammy [17]
B is the answer I think is correct
8 0
3 years ago
Other questions:
  • Write 6y = x + 5 in standard form using integers.
    9·1 answer
  • If 8x -16 = 0 what is the value of x
    15·2 answers
  • Find the coordinates of the circumcenter of the triangle below
    5·1 answer
  • a machine fills 150 bottles of water every 8 minutes how many minutes will it take to fill 675 bottles?
    6·1 answer
  • Can someone pleaseee help
    10·2 answers
  • The distance from the center of a tire to the edge is 4 inches. How far will the tire rotate in 3 rotations
    15·1 answer
  • Tell me the Definition of each Word listed (math)
    11·1 answer
  • Can someone help me understand how to solve this problem?
    15·1 answer
  • Its on the picture, plz go fast
    13·1 answer
  • Divide x² +x +1 by x+ 1 by long division method​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!