Answer: w=12, y=6√3
Step-by-step explanation:
Looking at the figure, we can split the triangle into 2 separate triangles. One on the left and one on the left. The triangle on the right is a 30-60-90 triangle. For this triangle, the hypotenuse is 2x in length. This is directly opposite of the right angle. The leg opposite to 30° is x in length. The leg opposite 60° is x√3 in length. Once you know the length of one side, you can plug in x to find the length of the other legs.
In this case, w and y are located on the same 30-60-90 triangle. Normally we would focus on that triangle to find our values, but in this instance, we don't have any values. We have to use the left triangle to find the leg that both triangles share.
The left triangle is a 45-45-90 triangle. For this triangle, the legs opposite of 45° is x in length. The hypotenuse is x√2. Since we know the hypotenuse, we can use it to find x.
x√2=8
x=8/√2
x=5.7 or 6 [Let's use 6 so that it is easier to work with a whole number]
Now that we know x, we can find w and y. Going back to the right triangle, we know the hypotenuse is 2x. We plug in 6 to find the length.
w=2x
w=2(6)
w=12
We know the leg opposite of 60° is x√3. We can plug in x.
y=6√3
Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004
Answer:
5
Step-by-step explanation:
You will need to drain 1016.308 gallons an hour
Answer:
0.5 cents per pound.
4.50/9 = 0.5
Please mark me brainliest! I hope this helps!