1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
6

PLS HELP ASAP I DONT HAVE TIME AND IT ALSO DETECTS IF ITS RIGHT OR WRONG

Mathematics
2 answers:
Crank3 years ago
5 0
Okay so the answer is
stiks02 [169]3 years ago
3 0

Answer:

i think it is B

Step-by-step explanation:

You might be interested in
Find the equation of the linear function represented by the table below in slope- intercept form. -4 18 1 -2 6 -22 11 -42​
34kurt

Answer:

what i don't get it doeyyyyyyy

3 0
2 years ago
The process standard deviation is 0.27, and the process control is set at plus or minus one standard deviation. Units with weigh
mr_godi [17]

Answer:

a) P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.15}) = P(Z>1)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.159+0.159 = 0.318

And the expected number of defective in a sample of 1000 units are:

X= 0.318*1000= 318

b) P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.05}) = P(Z>3)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.00135+0.00135 = 0.0027

And the expected number of defective in a sample of 1000 units are:

X= 0.0027*1000= 2.7

c) For this case the advantage is that we have less items that will be classified as defective

Step-by-step explanation:

Assuming this complete question: "Motorola used the normal distribution to determine the probability of defects and the number  of defects expected in a production process. Assume a production process produces  items with a mean weight of 10 ounces. Calculate the probability of a defect and the expected  number of defects for a 1000-unit production run in the following situation.

Part a

The process standard deviation is .15, and the process control is set at plus or minus  one standard deviation. Units with weights less than 9.85 or greater than 10.15 ounces  will be classified as defects."

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:

X \sim N(10,0.15)  

Where \mu=10 and \sigma=0.15

We can calculate the probability of being defective like this:

P(X

And we can use the z score formula given by:

z=\frac{x-\mu}{\sigma}

And if we replace we got:

P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.15}) = P(Z>1)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.159+0.159 = 0.318

And the expected number of defective in a sample of 1000 units are:

X= 0.318*1000= 318

Part b

Through process design improvements, the process standard deviation can be reduced to .05. Assume the process control remains the same, with weights less than 9.85 or  greater than 10.15 ounces being classified as defects.

P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.05}) = P(Z>3)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.00135+0.00135 = 0.0027

And the expected number of defective in a sample of 1000 units are:

X= 0.0027*1000= 2.7

Part c What is the advantage of reducing process variation, thereby causing process control  limits to be at a greater number of standard deviations from the mean?

For this case the advantage is that we have less items that will be classified as defective

5 0
3 years ago
A turtle walked in a straight line from 1:23 p.m. to 6:23 p.m. each hour, the turtle traveled four-fifths if a kilometer. How fa
liq [111]
Four Kilometers for the turtle
3 0
3 years ago
We create energy with electrical power plants true or false​
VashaNatasha [74]

Answer:

True

Step-by-step explanation:

Some of our energy comes from electrical power plants

5 0
3 years ago
Read 2 more answers
A pentagon has 5 equivalent sides, if each side is represented by the expression 2k+3, what is the perimeter
Musya8 [376]

Answer:

hy5ju5ju5uj5huj5h5

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Someone else helpp! I need help with this.​
    8·1 answer
  • Help pls i really need this!!
    7·2 answers
  • PLEASE HELP PICTURE SHOWN
    9·2 answers
  • Figure 1 is transformed to Figure 3, as shown in the diagram. Describe the transformation. A) dilation, then reflection B) refle
    13·2 answers
  • Please help me with this problem! I know three of the answers just need the last one!
    15·2 answers
  • A number n is negative
    7·1 answer
  • Rachael's starting salary is $27,000 a year. She will get a 4% raise annually. How much money will she have made after 7 years?
    5·1 answer
  • Find the value of x.<br><br> Can someone help please?
    15·1 answer
  • Solve the following
    11·2 answers
  • My mom walks 1 mile in 14<br> minutes. If she walked for 56<br> minutes, how far did she walk?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!