Let ‘s’ be the son’s age 12 years ago.
Let ‘f’ be the father’s current age.
4 years ago, the son was:
s-4
So, his father is currently:
3(s-4)
=
3s-12
Therefore:
f = 3s-12
In twelve years, the son will be:
s+12
And the father will be:
f+12
This can also be written as:
3s-12+12 as the fathers younger age would be f = 3s+12
=
3s
So, we know that s+12 is half the fathers current age, meaning the father is currently 2(s+12) which is equivalent to 2s+24. Also, we know that the father is currently 3 times the sons age 12 years ago, so 3s (proven by the calculations we made above). Therefore, 2s+24=3s which means 24=s. We can then substitute this, and we will receive 24+12 = 36
Son’s current age: 36
We then substitute the son’s age 12 years ago into 2s+24 to give us the father’s age.
2(24)+24 = 72
Father’s current age: 72
Working Principle: Stratified Random Sampling
nx = (Nx/N)*n
where:
nx = sample size for stratum x
Nx = population size for stratum x
N = total population size
n = total sample size
Given:
Nx = 100
N = 1000
n = 0.5*(1000) = 500
Required: Probability of Man to be selected
Solution:
nx = (Nx/N)*n
nx = (100/1000)*500 = 50 men
ny = (Nx/N)*n
ny = (100/1000)*500 = 50 women
Probability of Man to be selected = nx/(nx + ny)*100 = 50/(50+50)*100 = 50%
<em>ANSWER: 50%</em>
Hi there!
To solve this problem, we need to simplify.
2/3x = 12
To isolate x, we should multiply both sides of the equation by the reciprocal of 2/3 to make x equal to a value:
Reciprocal of 2/3 = 3/2
x = 12 * 3/2
x = 18
Hope this helps!
A) 1 out of 4
B) 1 out of 4
Answer:
your answer is going to be B: Obtuse