Answer:
B (5, 13)
Step-by-step explanation:
9x + 4y = 97
9x + 6y = 123
To solve by elimination, we want to <em>eliminate</em> a variable. To do this, we must make one variable cancel out.
First, we can see that both equations have 9x. To cancel out x, we must make <em>one</em> of the 9x's <em>negative</em>. To do this, multiply <em>each term</em> in the equation by -1.
-1(9x + 6y = 123)
-9x - 6y = -123
This is one of your equations. Set it up with your other given equation.
9x + 4y = 97
-9x - 6y = -123
Imagine this is one equation. Since every term is negative, you will be subtracting each term.
9x + 4y = 97
-9x - 6y = -123
___________
0x -2y = -26
-2y = -26
To isolate y further, divide both sides by -2.
y = 13
Now, to find x, plug y back into one of the original equations.
9x + 4(13) = 97
Multiply.
9x + 52 = 97
Subtract.
9x = 45
Divide.
x = 5
Check your answer by plugging both variables into the equation you have not used yet.
-9(5) - 6(13) = -123
-45 - 78 = -123
-123 = -123
Your answer is correct!
(5, 13)
Hope this helps!
Answer:
The limit does not exist
Step-by-step explanation
For this question you have to look at the function and see what y value does it approach as it gets closer and closer to x =2, from the left side it looks like it approaces 4 and from the left side it looks like it's approaching 1, since the limits from the left and right sides are not the same, the limit does not exist
The correct answer is A) 2:3 because 4/6 simplified is 2/3