1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
8

A kilobyte is 210 bytes and a megabyte is 220 bytes. How many kilobytes are in a megabyte? 2200 kilobytes 230 kilobytes 210 kilo

bytes 2 kilobytes
Mathematics
2 answers:
rjkz [21]3 years ago
6 0
The answer to your question is 220x210=2200 
hope this helps good luck.
yulyashka [42]3 years ago
4 0

Answer:

2 to the 10 power

Step-by-step explanation:

2 to the 20 power divided by 2 to the 10 power.

20-10

10

2 to the 10 power

You might be interested in
Solve negative 5 over 2, the whole multiplied by x minus 5 equals negative 55.
astraxan [27]

Answer:

-24

Step-by-step explanation:

-  \frac{5}{2} x \:  - 5 = 55

Multiply through by the denominator (that is, 2)

= 2 \times ( -  \frac{5}{2} x) \:  - 5(2) = 55(2)

=  - 5x - 10 = 110

Collect like terms

- 5x \:  = 110 +10

- 5x = 120

Divide through by - 5x

\frac{ - 5x}{ - 5}  =  \frac{120}{ - 5}

x =  - 24

5 0
3 years ago
Read 2 more answers
Write the equation of a vertical ellipse with a major axis of 20, a minor axis of 12, and a center of (6, 3)
maksim [4K]

Answer:

The equation of a vertical ellipse is  \frac{(x-6)^2}{100} + \frac{(y-3)^2}{36}   = 1\\

Step-by-step explanation:

Here, given:

Length of major axis:  20

⇒ 2 a  = 20  , or , a = 10

Length of minor axis:  12

⇒ 2 b  = 12  , or , b = 6

Also, center (h,k)  = (6,3)

Now, STANDARD EQUATION OF ELLIPSE :

\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}   = 1\\

Now, substituting the values, a, b , h and k in above expression, we get:

\frac{(x-6)^2}{10^2} + \frac{(y-3)^2}{6^2}   = 1\\

or, \frac{(x-6)^2}{100} + \frac{(y-3)^2}{36}   = 1\\

Hence, the equation of a vertical ellipse is  \frac{(x-6)^2}{100} + \frac{(y-3)^2}{36}   = 1\\

3 0
3 years ago
One rule of thumb for estimating crowds is that each person occupies 2.3 square feet. Use this value to estimate the size of a c
dybincka [34]

Answer:

150,595

Step-by-step explanation:

First, convert miles to feet:

4.1 mi × (5280 ft/mi) = 21648 ft

The area that the crowd takes up is:

2 × 8 ft × 21648 ft = 346368 ft²

The number of people is:

346368 ft² × (1 person / 2.3 ft²) = 150594.8

Rounding to the nearest integer, there are approximately 150,595 people in the crowd.

7 0
2 years ago
How do you write a polynomial function for this graph?
expeople1 [14]

first off, let's notice the graph touches the x-axis at -1 and 3, namely, those are the zeros/solutions/roots of the polynomial and therefore, the factors come from those points.

now, at -1, the graph doesn't cross the x-axis, instead it <u>simply bounces off</u> of it, that means the zero of x = -1, has an even multiplicity, could be 4 or 2 or 6, but let's go with 2.

at x = 3, the graph does cross the x-axis, meaning it has an odd multiplicity, could be 3 or 1, or 7 or 9, but let's use 1.


\bf \begin{cases} x=-1\implies &x+1=0\\ x=3\implies &x-3=0 \end{cases}~\hspace{5em}\stackrel{\textit{even multiplicity}}{(x+1)^2}\qquad \stackrel{\textit{odd multiplicity}}{(x-3)^1}=\stackrel{y}{0} \\\\\\ (x^2+2x+1)(x-3)=y\implies x^3+2x^2+x-3x^2-6x-3=y \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill x^3-x^2-5x-3=y~\hfill

5 0
3 years ago
Read 2 more answers
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Other questions:
  • Help pls due in 30mins
    10·2 answers
  • A triangle has a base of 7m and an area of 17.5 squared. What is the height?
    15·1 answer
  • Consider the tables.
    5·1 answer
  • What is the opposite of -3<br> -1<br> 0<br> -3<br> 3
    14·2 answers
  • The figure shown is made up of a square and a triangle. Express the area of the figure in terms of y.
    12·1 answer
  • 12,000 miles; 5% decrease
    12·1 answer
  • 9. Wade has 126 inches of 1-inch wide bias tape for a border
    7·1 answer
  • 24x – 22 = -4(1 – 6x)<br> The answers are <br> X=0<br> X=18<br> No solution <br> All real answers
    5·1 answer
  • The function is y=12x-15, which of the following is a coordinate point on the graph of this function? *
    10·1 answer
  • Una limusina cuesta $ 85 para alquilar por 3 horas más un 7% de impuesto sobre las ventas. Cúal es el costo total
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!