First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 
negative acceleration- deceleration
You're walking in one direction, and then the exact opposite of that direction, so you simply have to subtract the two distances.
200-150=50
You're 50 meters west of where you originally started.
You're west because 200 meters west is greater than 150 meters east. If the distance walked east was greater than the distance walked west, you would've been east of your starting position.