Answer:
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Explanation:
Given data,
The river flowing south at the rate, v = 3 m/s
To reach the other side directly across the river, he aims the raft, Ф = 30°
The speed of his raft across the river is given by the formula,
V = v / Sin Ф
= 3 / Sin 30°
= 6 m/s
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Answer:
3.7 A
Explanation:
Parameters given:
Magnetic field strength, B = 5 * 10^(-5) T
Distance of magnetic field from wire, r = 1.5 cm = 0.015 m
The magnetic field, B, due to a current, I, flowing a wire is given as:
B = (μ₀*I) / 2πr
Where μ₀ = permeability of free space
To get the current, I, we make I the subject of the formula:
I = (2πr * B) / μ₀
I = (2 * 3.142 * 5 * 10^(-5)) / (1.25663706 × 10^(-6))
I = 3.7 A
Answer: It indicates the speed of a object. The steeper the line the greater the speed of the object.
Answer: 1.88
Explanation
Applying Snell’s Law, sin(1)/sin(2) = n(2)/n(1), where n is the index of refraction and sin 1 and 2 being of incidence and refracted respectively.
1) sin35/sin24 = n(2)/1.33
2) 1.41 = n(2)/1.33
3) n(2) = 1.41 x 1.33
4) n(2) = 1.88
Hope this helps :)
The position vector can be
transcribed as:
A<span> = 6 i + y j
</span>
i <span>points in the x-direction and j points
in the y-direction.</span>
The magnitude of the
vector is its dot product with itself:
<span>|A|2 = A·A</span>
<span>102 = (6 i +
y j)•(6 i+ y j)
Note that i•j = 0, and i•i = j•j =
1 </span>
<span>100 = 36 + y2
</span>
<span>64 = y2</span>
<span>get the square root of 64 = 8</span>
<span>The vertical component of the vector is 8 cm.</span>