First we will calculate free energy change:
ΔG₀ = ΔH₀ - (T * ΔS₀)
= - 793 kJ - (298 * - 0.319 kJ/K) = - 698 kJ
We know the relation between free energy change and cell potential is:
ΔG₀ = - n F E⁰ where
F = Faraday's constant = 96485 C/mol
n = 2 (given by equation that the electrons involved is 2)
ΔG₀ = - 2 x 96485 x E⁰
- 698 kJ = - 2 x 96485 x E⁰
E⁰ = (698 x 1000) / (2 x 96485) = 3.62 volts
Answer:
1) <em>The correct answer is A. Collision</em>
2) A hot solvent helps a solid dissolve faster because an increase in <u><em>kinetic energy</em></u> that also increases the rate of collisions
Explanation:
When a solute is added into a solvent and stirred, the solute particles get distributed to all parts of the solvent as a result of stirring.
More collisions occur between the solute and the solvent due to stirring. This increases the rate of dissolving.
<em>When a solvent is heated, then the kinetic energy would increase and the atoms will collide with a much greater force. As a result, ore solute will be able to dissolve in the solvent. </em>
Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Answer:
This is the temperature indicated by a moistened thermometer bulb exposed to the air flow. The evaporation is reduced when the air contains more water vapor. The wet bulb temperature is always lower than the dry bulb temperature but will be identical with 100% relative humidity.
Explanation: