Answer:
Let the Dulcina's collection be 'x'
Let the Tremaine collection be 'x-39'
x + x - 39 =129
2x = 129 +39
2x = 168
x = 168/2
x = 84
Dulcina's collection = x = 84
Tremaine's collection = x - 39 = 84 - 39 = 45
Answer:
0.064
Step-by-step explanation:
( 0.4) ^3
Solution :
( 0.4) ^3
= 0.4 x 0.4 x 0.4
= 0.064
The sum of cubes is given as:
a³ + b³ = (a + b)(a² - ab + b²)
Example for the sum of cubes:
64x³+y³ ⇒ This is the sum of cubes because each term; 64, x³, and y³ are cube numbers
By writing each term as an expression of cube numbers, we have:
(4x)³ + (y)³ ⇒ 64 is 4³
Use the factorization of the sum of cubes, we have:
(4x + y) ( (4x)²- 4xy + y²)
(4x + y) (16x² - 4xy + y²)
--------------------------------------------------------------------------------------------------------------
The difference of cubes can be factorized as:
(x³ - y³) = (x - y)(x² + xy + y²)
Example
(125x³ - 8y³) = (5x - 2y) ((5x)² + (5x)(2y) + (2y)²)
= (5x - 2y) (25x² + 10xy + 4y²)
Answer:
Step 3 contains error.
Step-by-step explanation:
The given equation is :

Step 1.
Cross multiplying,

Step 2.
Subtract 9 from both sides

Step 3.
Cross multiplying

So, there is an error in step 3. The correct answer should be 45.